Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Teixeira Guimarães is active.

Publication


Featured researches published by Claudia Teixeira Guimarães.


Journal of Bacteriology | 2005

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae

Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão

This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

Ana Tereza Ribeiro de Vasconcelos; Darcy F. De Almeida; Mariangela Hungria; Claudia Teixeira Guimarães; Regina Vasconcellos Antônio; Francisca Cunha Almeida; Luiz G.P. De Almeida; Rosana Almeida; José Antonio Alves-Gomes; Elizabeth M. Mazoni Andrade; Júlia Rolão Araripe; Magnólia Fernandes Florêncio de Araújo; Spartaco Astolfi-Filho; Vasco Azevedo; Alessandra Jorge Baptistà; Luiz Artur Mendes Bataus; Jacqueline da Silva Batista; André Beló; Cássio van den Berg; Maurício Reis Bogo; Sandro L. Bonatto; Juliano Bordignon; Marcelo M. Macedo Brigidom; Cristiana A. Alves Brito; Marcelo Brocchi; Hélio Almeida Burity; Anamaria A. Camargo; Divina das Dôres de Paula Cardoso; N. P. Carneiro; Dirce Maria Carraro

Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.


Plant Journal | 2010

Two functionally distinct members of the MATE (multi‐drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize

Lyza G. Maron; Miguel A. Piñeros; Claudia Teixeira Guimarães; Jurandir V. Magalhaes; Jennifer K. Pleiman; Chuanzao Mao; Jon E. Shaff; Silvia Neto Jardim Belicuas; Leon V. Kochian

Crop yields are significantly reduced by aluminum (Al) toxicity on acidic soils, which comprise up to 50% of the worlds arable land. Al-activated release of ligands (such as organic acids) from the roots is a major Al tolerance mechanism in plants. In maize, Al-activated root citrate exudation plays an important role in tolerance. However, maize Al tolerance is a complex trait involving multiple genes and physiological mechanisms. Recently, transporters from the MATE family have been shown to mediate Al-activated citrate exudation in a number of plant species. Here we describe the cloning and characterization of two MATE family members in maize, ZmMATE1 and ZmMATE2, which co-localize to major Al tolerance QTL. Both genes encode plasma membrane proteins that mediate significant anion efflux when expressed in Xenopus oocytes. ZmMATE1 expression is mostly concentrated in root tissues, is up-regulated by Al and is significantly higher in Al-tolerant maize genotypes. In contrast, ZmMATE2 expression is not specifically localized to any particular tissue and does not respond to Al. [(14)C]-citrate efflux experiments in oocytes demonstrate that ZmMATE1 is a citrate transporter. In addition, ZmMATE1 expression confers a significant increase in Al tolerance in transgenic Arabidopsis. Our data suggests that ZmMATE1 is a functional homolog of the Al tolerance genes recently characterized in sorghum, barley and Arabidopsis, and is likely to underlie the largest maize Al tolerance QTL found on chromosome 6. However, ZmMATE2 most likely does not encode a citrate transporter, and could be involved in a novel Al tolerance mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Aluminum tolerance in maize is associated with higher MATE1 gene copy number

Lyza G. Maron; Claudia Teixeira Guimarães; Matias Kirst; Patrice S. Albert; James A. Birchler; Peter J. Bradbury; Edward S. Buckler; Alison E. Coluccio; Tatiana V. Danilova; David Kudrna; Jurandir V. Magalhaes; Miguel A. Piñeros; Michael C. Schatz; Rod A. Wing; Leon V. Kochian

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


PLOS ONE | 2011

The relationship between population structure and aluminum tolerance in cultivated sorghum.

Fernanda F. Caniato; Claudia Teixeira Guimarães; Martha T. Hamblin; Claire Billot; Jean-François Rami; B. Hufnagel; Leon V. Kochian; Jiping Liu; Antonion Augusto F. Garcia; C. Tom Hash; Punna Ramu; Sharon E. Mitchell; Stephen Kresovich; Antonio Carlos Baião de Oliveira; Gisela de Avellar; Aluízio Borém; Jean-Christophe Glaszmann; R. E. Schaffert; Jurandir V. Magalhaes

Background Acid soils comprise up to 50% of the worlds arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the AltSB locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking AltSB and SbMATE expression was undertaken to assess a possible role for AltSB in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. AltSB was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.


Euphytica | 2003

Mapping QTLs for aluminum tolerance in maize

Fernando Enrique Ninamango-Cárdenas; Claudia Teixeira Guimarães; Paulo Roberto Martins; Sidney Netto Parentoni; N. P. Carneiro; Maurício Antônio Lopes; José Roberto Moro; Edilson Paiva

Aluminum toxicity is one of the major constraints for plant development in acid soils, limiting food production in many countries. Cultivars genetically adapted to acid soils may offer an environmental compatible solution, providing a sustainable agriculture system. The aim of this work was to identify genomic regions associated with Al tolerance in maize, and to quantify the genetic effects on the phenotypic variation. A population of 168F3:4 families derived from a cross between two contrasting maize inbred lines for Al tolerance was evaluated using the NSRL and RSRL parameters in nutrient solution containing toxic level of aluminum. Variance analyses indicated that the NSRL was the most reliable phenotypicindex to measure Al tolerance in the population, being used for further QTL mapping analysis. RFLP and SSR markers were selected for bulked segregant analysis, and additional SSR markers, flanking the polymorphisms of interest, were chosen in order to saturate the putative target regions. Seven linkage groups were constructed using 17 RFLP and 34 SSR markers. Five QTLs were mapped on chromosomes 2, 6 and 8, explaining 60% of the phenotypic variation. QTL4 and marker umc043 were located on chromosomes 8and 5, close to genes encoding for enzymes involved in the organic acids synthesis pathways, a widely proposed mechanism for Al tolerance in plants. QTL2 was mapped in the same region as Alm2,also associated with Al tolerance in maize. In addition, dominant and additive effects were important in the control of this trait in maize.


PLOS ONE | 2011

Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

Jeronimo C. Ruiz; Vívian D'Afonseca; Artur Silva; Amjad Ali; Anne Cybelle Pinto; Anderson Rodrigues dos Santos; Aryanne A. M. C. Rocha; Débora O. Lopes; Fernanda Alves Dorella; Luis G. C. Pacheco; Marcília Pinheiro da Costa; Meritxell Zurita Turk; Núbia Seyffert; Pablo M. R. O. Moraes; Siomar de Castro Soares; Sintia Almeida; Thiago Luiz de Paula Castro; Vinicius Augusto Carvalho de Abreu; Eva Trost; Jan Baumbach; Andreas Tauch; Maria Paula Cruz Schneider; John Anthony McCulloch; Louise Teixeira Cerdeira; Rommel Thiago Jucá Ramos; Adhemar Zerlotini; Anderson J. Dominitini; Daniela M. Resende; Elisângela Monteiro Coser; Luciana Márcia Oliveira

Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


Theoretical and Applied Genetics | 2007

Genetic diversity for aluminum tolerance in sorghum.

Fernanda F. Caniato; Claudia Teixeira Guimarães; R. E. Schaffert; V. M. C. Alves; Leon V. Kochian; Aluízio Borém; Patricia E. Klein; Jurandir V. Magalhaes

Genetic variation for aluminum (Al) tolerance in plants has allowed the development of cultivars that are high yielding on acidic, Al toxic soils. However, knowledge of intraspecific variation for Al tolerance control is needed in order to assess the potential for further Al tolerance improvement. Here we focused on the major sorghum Al tolerance gene, AltSB, from the highly Al tolerant standard SC283 to investigate the range of genetic diversity for Al tolerance control in sorghum accessions from diverse origins. Two tightly linked STS markers flanking AltSB were used to study the role of this locus in the segregation for Al tolerance in mapping populations derived from different sources of Al tolerance crossed with a common Al sensitive tester, BR012, as well as to isolate the allelic effects of AltSB in near-isogenic lines. The results indicated the existence not only of multiple alleles at the AltSB locus, which conditioned a wide range of tolerance levels, but also of novel sorghum Al tolerance genes. Transgressive segregation was observed in a highly Al tolerant breeding line, indicating that potential exists to exploit the additive or codominant effects of distinct Al tolerance loci. A global, SSR-based, genetic diversity analysis using a broader sorghum set revealed the presence of both multiple AltSB alleles and different Al tolerance genes within highly related accessions. This suggests that efforts toward broadening the genetic basis for Al tolerance in sorghum may benefit from a detailed analysis of Al tolerance gene diversity within subgroups across a target population.


Theoretical and Applied Genetics | 2012

Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences

P. K. Sabadin; Marcos Malosetti; Martin P. Boer; F. D. Tardin; F. G. Santos; Claudia Teixeira Guimarães; R. L. Gomide; C. L. T. Andrade; P. E. P. Albuquerque; Fernanda F. Caniato; Marcelo Mollinari; Gabriel Rodrigues Alves Margarido; B. F. Oliveira; R. E. Schaffert; A. A. F. Garcia; F. A. van Eeuwijk; Jurandir V. Magalhaes

Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.


Plant Physiology | 2014

Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils

B. Hufnagel; S.M. de Sousa; L. Assis; Claudia Teixeira Guimarães; W. Leiser; G. C. Azevedo; B. F. Negri; Brandon G. Larson; Jon E. Shaff; M. M. Pastina; B. A. Barros; E. Weltzien; H.F.W. Rattunde; J. H. M. Viana; R.T. Clark; Alexandre X. Falcão; R. Gazaffi; Antonio Augusto Franco Garcia; R. E. Schaffert; Leon V. Kochian; Jurandir V. Magalhaes

Sorghum homologs of a rice gene contributing to P-starvation tolerance enhance P uptake and crop performance in low-P soils via modulation of root system morphology and architecture. Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.

Collaboration


Dive into the Claudia Teixeira Guimarães's collaboration.

Top Co-Authors

Avatar

Jurandir V. Magalhaes

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

R. E. Schaffert

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Sidney Netto Parentoni

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

N. P. Carneiro

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Leon V. Kochian

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Eliane Aparecida Gomes

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

M. M. Pastina

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Edilson Paiva

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Lauro José Moreira Guimarães

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Fernanda F. Caniato

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Researchain Logo
Decentralizing Knowledge