Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Wagner-Riddle is active.

Publication


Featured researches published by Claudia Wagner-Riddle.


Canadian Journal of Soil Science | 1997

ESTIMATES OF NITROUS OXIDE EMISSIONS FROM AGRICULTURAL FIELDS OVER 28 MONTHS

Claudia Wagner-Riddle; G. W. Thurtell; G. K. Kidd; E. G. Beauchamp; R. Sweetman

Field studies conducted throughout the calendar year are needed to improve flux estimates for the greenhouse gas nitrous oxide (N2O). In this study, we report monthly N2O emissions measured using micrometeorological techniques and a Tunable Diode Laser Trace Gas Analyzer (TDLTGA). Nitrous oxide fluxes were measured at the Elora Research Station (20 km north of Guelph, Ontario) from July to November 1992, and from March 1993 to February 1995, giving a total of 2445 daily averages obtained during the full length of the experiment. The soil at the experimental site was a Conestogo silt loam (Gleyed melanic brunisol). Several fields were monitored including fallow, manured fallow, Kentucky bluegrass, alfalfa, barley, canola, soybeans and corn plots. Spring thaw emissions from fallow or ploughed plots measured from March to April ranged from 1.5 to 4.3 kg N ha−1, corresponding to approximately 65% of the total annual emission. Similar effects were not observed on the vegetated (alfalfa and grass) plots. The lo...


Nutrient Cycling in Agroecosystems | 1998

Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices

Claudia Wagner-Riddle; G. W. Thurtell

Highest rates of N2O emissions from fertilized as well as natural ecosystems have often been measured at spring thaw. But, it is not clear if management practices have an effect on winter and spring thaw emissions, or if measurements conducted over several years would reveal different emission patterns depending on winter conditions. In this study, we present N2O fluxes obtained using the flux-gradient approach over four winter and spring thaw periods, spanning from 1993 to 1996, at two locations in Ontario, Canada. Several agricultural fields (bare soil, barley, soybean, canola, grass, corn) subjected to various management practices (manure and nitrogen fertilizer addition, alfalfa ploughing, fallowing) were monitored. Nitrous oxide emissions from these fields from January to April over four years ranged between 0 and 4.8 kg N ha-1. These thaw emissions are substantial and should be considered in the nitrous oxide budgets in regions where thaw periods occur. Our study indicates that agricultural management can play a role in mitigating these emissions. Our data show that fallowing, manure application and alfalfa incorporation in the fall lead to high spring emissions, while the presence of plants (as in the case of alfalfa or grass) can result in negligible emissions during thaw. This presents an opportunity for mitigation of N2O emissions through the use of over-wintering cover crops.


Canadian Journal of Animal Science | 2006

Methane and nitrous oxide emissions from Canadian animal agriculture: A review

E. Kebreab; K. Clark; Claudia Wagner-Riddle

Considerable evidence of climate change associated with emissions of greenhouse gases (GHG) has resulted in international efforts to reduce GHG emissions. The agriculture sector contributes about 8% of GHG emissions in Canada mostly through methane (CH4) and nitrous oxide (N2O). The objective of this paper was to compile an integrative review of CH4 and N2O emissions from livestock by taking a whole cycle approach from enteric fermentation to manure treatment and storage, and field application of manure. Basic microbial processes that result in CH4 production in the rumen and hindgut of animals were reviewed. An overview of CH4 and N2O production processes in manure, and controlling factors are presented. Most of the studies conducted in relation to enteric fermentation were in dairy and beef cattle. To date, research has focussed on GHG emissions from the stored manures of dairy, beef cattle and swine; therefore, we focus our review on these. Several methods used to measure GHG emissions from livestock a...


Nutrient Cycling in Agroecosystems | 2005

Toward Improved Coefficients for Predicting Direct N2O Emissions from Soil in Canadian Agroecosystems

Bobbi L. Helgason; H. Henry Janzen; M. H. Chantigny; C. F. Drury; B. H. Ellert; E. G. Gregorich; R. L. Lemke; Elizabeth Pattey; Philippe Rochette; Claudia Wagner-Riddle

Agricultural soils emit nitrous oxide (N2O), a potent greenhouse gas. Predicting and mitigating N2O emissions is not easy. To derive national coefficients for N2O emissions from soil, we collated over 400 treatment evaluations (measurements) of N2O fluxes from farming systems in various ecoregions across Canada. A simple linear coefficient for fertilizer-induced emission of N2O in non-manured soils (1.18% of N applied) was comparable to that used by the Intergovernmental Panel on Climate Change (IPCC) (1.25% of N applied). Emissions were correlated to soil and crop management practices (manure addition, N fertilizer addition and inclusion of legumes in the rotation) as well as to annual precipitation. The effect of tillage on emissions was inconsistent, varying among experiments and even within experiments from year to year. In humid regions (e.g., Eastern Canada) no-tillage tended to enhance N2O emissions; in arid regions (e.g., Western Prairies) no-tillage sometimes reduced emissions. The variability of N2O fluxes shows that we cannot yet always distinguish between potential mitigation practices with small (e.g., <10%) differences in emission. Our analysis also emphasizes the need for developing consistent experimental approaches (e.g., ‘control’ treatments) and methodologies (i.e. measurement period lengths) for estimating N2O emissions.


Global Biogeochemical Cycles | 2000

Evaluating annual nitrous oxide fluxes at the ecosystem scale

Peter M. Groffman; Rainer Brumme; Klaus Butterbach-Bahl; Karen E. Dobbie; A. R. Mosier; Dennis Ojima; Hans Papen; William J. Parton; K. A. Smith; Claudia Wagner-Riddle

Evaluation of N2O flux has been one of the most problematic topics in environmental biogeochemistry over the last 10–15 years. Early ideas that we should be able to use the large body of existing research on terrestrial N cycling to predict patterns of N2O flux at the ecosystem scale have been hard to prove due to extreme temporal and spatial variability in flux. The vast majority of the N2O flux measurement and modeling activity that has taken place has been process level and field scale, i.e., measurement, analysis and modeling of hourly and daily fluxes with chambers deployed in field plots. It has been very difficult to establish strong predictive relationships between these hourly and daily fluxes and field-scale parameters such as temperature, soil moisture, and soil inorganic N concentrations. In this study, we addressed the question of whether we can increase our predictive understanding of N2O fluxes by examining relationships between flux and environmental parameters at larger spatial and temporal scales, i.e., to explore relationships between annual rather than hourly or daily fluxes and ecosystem-scale variables such as plant community and soil type and annual climate rather than field-scale variables such as soil moisture and temperature. We addressed this question by examining existing data on annual fluxes from temperate forest, cropland, and rangeland ecosystems, analyzing both multiyear data sets from individual sites as well as cross-site comparison of single annual flux values from multiple sites. Results suggest that there are indeed coherent patterns in annual N2O flux at the ecosystem scale in forest, cropland, and rangeland ecosystems but that these patterns vary by region and only emerge with continuous (at least daily) flux measurements over multiple years. An ecosystem approach to evaluating N2O fluxes will be useful for regional and global modeling and for computation of national N2O flux inventories for regulatory purposes but only if measurement programs are comprehensive and continuous.


Agricultural and Forest Meteorology | 2003

A diode laser based gas monitor suitable for measurement of trace gas exchange using micrometeorological techniques

G. Edwards; G. W. Thurtell; G.E. Kidd; G.M Dias; Claudia Wagner-Riddle

A fast response, sensitive, field-worthy trace gas analyzer (TGA), based on the principle of diode laser absorption spectroscopy has been developed. The TGA is suitable for in situ trace gas flux measurements using micrometeorological techniques, and is capable of achieving total system noise levels of less than 1, 2, or 4 part per billion by volume (ppbv) rms for N2O, NH3, and CH4, respectively, for a 5-s integration period, and less than 50 pptv for 1-h averaging periods. This sensitivity is accomplished using a unique approach to digital signal processing and a single-path sample absorption cell, both of which reduce noise due to optical fringes. The instrument is also capable of rapid sampling rates (10 samples/s) sufficient for eddy correlation (EC) measurements when used with the appropriate flow system design. The TGA software and electronics have been designed to interface directly with micrometeorological instrumentation such as sonic anemometers, facilitating the use with the eddy correlation and gradient techniques. The operation, characteristics, and practical aspects of employing the TGA with micrometeorological techniques are reviewed. Gradient flux data for N2O and CH4 from field study measurements is from two plots are presented. The results demonstrate the capabilities of the TGA to make sensitive, continuous measurements of trace gas fluxes using micrometeorological techniques, allowing the assessment of the immediate and long-term impact of treatments or perturbations to natural and agricultural systems.


Journal of Dairy Science | 2013

Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis

Jad Ranga Niroshan Appuhamy; A. B. Strathe; Susantha Jayasundara; Claudia Wagner-Riddle; J. Dijkstra; E. Kebreab

Monensin is a widely used feed additive with the potential to minimize methane (CH4) emissions from cattle. Several studies have investigated the effects of monensin on CH4, but findings have been inconsistent. The objective of the present study was to conduct meta-analyses to quantitatively summarize the effect of monensin on CH4 production (g/d) and the percentage of dietary gross energy lost as CH4 (Ym) in dairy cows and beef steers. Data from 22 controlled studies were used. Heterogeneity of the monensin effects were estimated using random effect models. Due to significant heterogeneity (>68%) in both dairy and beef studies, the random effect models were then extended to mixed effect models by including fixed effects of DMI, dietary nutrient contents, monensin dose, and length of monensin treatment period. Monensin reduced Ym from 5.97 to 5.43% and diets with greater neutral detergent fiber contents (g/kg of dry matter) tended to enhance the monensin effect on CH4 in beef steers. When adjusted for the neutral detergent fiber effect, monensin supplementation [average 32 mg/kg of dry matter intake (DMI)] reduced CH4 emissions from beef steers by 19±4 g/d. Dietary ether extract content and DMI had a positive and a negative effect on monensin in dairy cows, respectively. When adjusted for these 2 effects in the final mixed-effect model, monensin feeding (average 21 mg/kg of DMI) was associated with a 6±3 g/d reduction in CH4 emissions in dairy cows. When analyzed across dairy and beef cattle studies, DMI or monensin dose (mg/kg of DMI) tended to decrease or increase the effect of monensin in reducing methane emissions, respectively. Methane mitigation effects of monensin in dairy cows (-12±6 g/d) and beef steers (-14±6 g/d) became similar when adjusted for the monensin dose differences between dairy cow and beef steer studies. When adjusted for DMI differences, monensin reduced Ym in dairy cows (-0.23±0.14) and beef steers (-0.33±0.16). Monensin treatment period length did not significantly modify the monensin effects in dairy cow or beef steer studies. Overall, monensin had stronger antimethanogenic effects in beef steers than dairy cows, but the effects in dairy cows could potentially be improved by dietary composition modifications and increasing the monensin dose.


Canadian Journal of Soil Science | 2013

Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze—thaw cycles

Neil Risk; David Snider; Claudia Wagner-Riddle

Risk, N., Snider, D. and Wagner-Riddle, C. 2013. Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles. Can. J. Soil Sci. 93: 401-414. The freezing and thawing of soil in cold climates often produces large emissions of nitrous oxide (N2O) that may contribute significantly to a soils annual greenhouse gas emission budget. This review summarizes the state of knowledge of the physical and biological mechanisms that drive heightened N2O emissions at spring melt. Most studies of freeze-thaw N2O emissions have concluded that denitrification is the dominant process responsible for the large thaw fluxes. Soil moisture, availability of carbon and nitrogen substrates, and freeze temperature and duration are the major factors identified as controlling freeze-thaw cycle (FTC) N2O emissions. Two mechanisms are proposed to lead to enhanced N2O emissions at thaw: (1) the physical release of N2O that is produced throughout the winter and trapped under frozen surface layers and/or within nutrient-rich water films in the frozen layers, and (2) the emission of newly produced (de novo) N2O at the onset of thaw, which is stimulated by increased biological activity and changes in physical and chemical soil conditions. Early studies implicated the physical release of N2O from subsurface soil layers as the main mechanism contributing to spring thaw emissions, but most current studies do not support this hypothesis. Mounting evidence suggests that most of the emitted N2O is produced de novo. This may be fueled by newly available denitrification substrates that are liberated from dead microbes, fine roots, and/or the disintegration of soil aggregates. The release of N2O trapped in shallow surface layers may represent a small, but important contribution of the total emissions. Application of new techniques to study microbial communities in their natural environments, such as metagenomics and stable isotope studies, have the potential to enhance our understanding of the soil N cycle and its linkages to FTC N2O emissions. Future field studies of N2O emissions ought to quantify both overwinter accumulation/release and the de novo production of N2O so that the contribution of each mechanism to the annual emission budget is known.


Journal of Environmental Quality | 2012

Relationships between dairy slurry total solids, gas emissions, and surface crusts.

Jeffrey D. Wood; R. Gordon; Claudia Wagner-Riddle; Kari E. Dunfield; Ali Madani

Livestock slurry storages are sources of methane (CH₄), nitrous oxide (NO₂), and ammonia (NH₃) emissions. Total solids (TS) content is an indicator of substrate availability for CH₄ and N₂O production and NH₃ emissions and is related to crust formation, which can affect these gas emissions. The effect of TS on these emissions from pilot-scale slurry storages was quantified from 20 May through 16 Nov. 2010 in Nova Scotia, Canada. Emissions from six dairy slurries with TS ranging from 0.3 to 9.5% were continuously measured using flow-through steady-state chambers. Methane emissions modeled using the USEPA methodology were compared with measured data focusing on emissions when empty storages were filled, and retention times were >30 d with undegraded volatile solids (VS) remaining in the system considered available for CH₄ production (VS carry-over). Surface crusts formed on all the slurries. Only the slurries with TS of 3.2 and 5.8% were covered completely for ∼3 mo. Nitrous oxide contributed <5% of total greenhouse gas emissions for all TS levels. Ammonia and CH₄ emissions increased linearly with TS despite variable crusting, suggesting substrate availability for gas production was more important than crust formation in regulating emissions over long-term storage. Modeled CH₄ emissions were substantially higher than measured data in the first month, and accounting for this could improve overall model performance. Carried-over VS were a CH₄ source in months 2 through 6. The results of this study suggest that substrate availability regulates emissions over long-term storage and that modifying the USEPA model to better describe carbon cycling is warranted.


Canadian Journal of Soil Science | 1997

Three methods to estimate N2O fluxes as impacted by agricultural management

D. L. Burton; D. W. Bergstrom; J. A. Covert; Claudia Wagner-Riddle; E. G. Beauchamp

This study examines three methods of evaluating N2O flux and accumulation in soil profile over a growing season under three soil management regimes (fallow, fallow with manure addition and cropped to alfalfa). Estimates of N2O flux were made based on measured soil atmosphere concentration gradients in the top 15 cm and compared to flux estimates based on ex situ cores and micro-meteorological measurements made in parallel studies. All methods indicated strong seasonal trends relating to precipitation events. The amounts of N2O accumulating the profile decreased in the order alfalfa < fallow < fallow/manure. The amounts of N2O accumulating in the profile ranged from ambient (0.35 µL L−1) to 490 µL L−1. Diffusion of N2O to the lower profile was shown to provide temporary storage of N2O and thereby provide the opportunity for further reduction to N2 prior to efflux from the surface. In comparing the estimates of surface flux, all three methods were of the same order of magnitude for the fallow site but profi...

Collaboration


Dive into the Claudia Wagner-Riddle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. VanderZaag

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Gordon

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge