Claudia Zwingmann
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Zwingmann.
Hepatology | 2010
Chieko Saito; Claudia Zwingmann; Hartmut Jaeschke
Acetaminophen (APAP) overdose is a major cause of acute liver failure. The glutathione (GSH) precursor N‐acetylcysteine (NAC) is used to treat patients with APAP overdose for up to 48 hours. Although it is well established that early treatment with NAC can improve the scavenging of the reactive metabolite N‐acetyl‐p‐benzoquinone imine, protective mechanisms at later times remain unclear. To address this issue, fasted C3Heb/FeJ mice were treated with 300 mg/kg APAP and then received intravenously 0.65 mmol/kg GSH or NAC at 1.5 hours after APAP. The animals were sacrificed at 6 hours. APAP alone caused severe liver injury with peroxynitrite formation and DNA fragmentation, all of which was attenuated by both treatments. However, GSH (−82%) was more effective than NAC (−46%) in preventing liver injury. Using nuclear magnetic resonance spectroscopy to measure tissue adenosine triphosphate (ATP) levels and the substrate flux through the mitochondrial Krebs cycle, it was observed that the reduced liver injury correlated with accelerated recovery of mitochondrial GSH content, maintenance of ATP levels, and an increased substrate supply for the mitochondrial Krebs cycle compared with APAP alone. NAC treatment was less effective in recovering ATP and mitochondrial GSH levels and showed reduced substrate flux through the Krebs cycle compared with GSH. However, increasing the dose of NAC improved the protective effect similar to GSH, suggesting that the amino acids not used for GSH synthesis were used as mitochondrial energy substrates. Conclusion: Delayed treatment with GSH and NAC protect against APAP overdose by dual mechanisms—that is, by enhancing hepatic and mitochondrial GSH levels (scavenging of reactive oxygen and peroxynitrite)—and by supporting the mitochondrial energy metabolism. (HEPATOLOGY 2009.)
Hepatology | 2007
Gavin Wright; Nathan Davies; Debbie L. Shawcross; Stephen J. Hodges; Claudia Zwingmann; Heather F. Brooks; Ali R. Mani; David Harry; Vanessa Stadlbauer; Zheng Zou; Roger Williams; Ceri Davies; Kevin Moore; Rajiv Jalan
This study explores the hypothesis that the inflammatory response induced by administration of lipopolysaccharide (LPS) exacerbates brain edema in cirrhotic rats; and if so whether this is associated with altered brain metabolism of ammonia or anatomical disturbance of the blood‐brain barrier. Adult Sprague‐Dawley rats 4 weeks after bile duct ligation (BDL)/Sham‐operation, or naïve rats fed a hyperammonemic diet (HD), were injected with LPS (0.5 mg/kg, intraperitoneally) or saline, and killed 3 hours later. LPS administration increased brain water in HD, BDL, and sham‐operated groups significantly (P < 0.05), but this was associated with progression to pre‐coma stages only in BDL rats. LPS induced cytotoxic brain swelling and maintained anatomical integrity of the blood‐brain barrier. Plasma/brain ammonia levels were higher in HD and BDL rats than in sham‐operated controls and did not change with LPS administration. Brain glutamine/myoinositol ratio was increased in the HD group but reduced in the BDL animals. There was a background pro‐inflammatory cytokine response in the brains of cirrhotic rats, and plasma/brain tumor necrosis factor alpha (TNF‐α) and IL‐6 significantly increased in LPS‐treated animals. Plasma nitrite/nitrate levels increased significantly in LPS groups compared with non‐LPS controls; however, frontal cortex nitrotyrosine levels only increased in the BDL + LPS rats (P < 0.005 versus BDL controls). Conclusion: Injection of LPS into cirrhotic rats induces pre‐coma and exacerbates cytotoxic edema because of the synergistic effect of hyperammonemia and the induced inflammatory response. Although the exact mechanism of how hyperammonemia and LPS facilitate cytotoxic edema and pre‐coma in cirrhosis is not clear, our data support an important role for the nitrosation of brain proteins. (HEPATOLOGY 2007.)
Gastroenterology | 2003
Nicolas Chatauret; Claudia Zwingmann; Christopher F. Rose; Dieter Leibfritz; Roger F. Butterworth
BACKGROUND & AIMS Mild hypothermia has a protective effect on brain edema and encephalopathy in both experimental and human acute liver failure. The goals of the present study were to examine the effects of mild hypothermia (35 degrees C) on brain metabolic pathways using combined (1)H and (13)C-Nuclear Magnetic Resonance (NMR) spectroscopy, a technique which allows the study not only of metabolite concentrations but also their de novo synthesis via cell-specific pathways in the brain. METHODS (1)H and (13)C NMR spectroscopy using [1-(13)C] glucose was performed on extracts of frontal cortex obtained from groups of rats with acute liver failure induced by hepatic devascularization whose body temperature was maintained either at 37 degrees C (normothermic) or 35 degrees C (hypothermic), and appropriate sham-operated controls. RESULTS At coma stages of encephalopathy in the normothermic acute liver failure animals, glutamine concentrations in frontal cortex increased 3.5-fold compared to sham-operated controls (P < 0.001). Comparable increases of brain glutamine were observed in hypothermic animals despite the absence of severe encephalopathy (coma). Brain glutamate and aspartate concentrations were respectively decreased to 60.9% +/- 7.7% and 42.2% +/- 5.9% (P < 0.01) in normothermic animals with acute liver failure compared to control and were restored to normal values by mild hypothermia. Concentrations of lactate and alanine in frontal cortex were increased to 169.2% +/- 15.6% and 267.3% +/- 34.0% (P < 0.01) respectively in normothermic rats compared to controls. Furthermore, de novo synthesis of lactate and alanine increased to 446.5% +/- 48.7% and 707.9% +/- 65.7% (P < 0.001), of control respectively, resulting in increased fractional (13)C-enrichments in these cytosolic metabolites. Again, these changes of lactate and alanine concentrations were prevented by mild hypothermia. CONCLUSIONS Mild hypothermia (35 degrees C) prevents the encephalopathy and brain edema resulting from hepatic devascularization, selectively normalizes lactate and alanine synthesis from glucose, and prevents the impairment of oxidative metabolism associated with this model of ALF, but has no significant effect on brain glutamine. These findings suggest that a deficit in brain glucose metabolism rather than glutamine accumulation is the major cause of the cerebral complications of acute liver failure.
Journal of Cerebral Blood Flow and Metabolism | 2003
Claudia Zwingmann; Dieter Leibfritz; Alan S. Hazell
A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1–13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-μmol/L MnCl2 led to 50% and 70% decreases of ATP/ADP and phosphocreatine–creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4–13C]glutamate, [2–13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3–13C]lactate and fourfold elevated [4–13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.
Glia | 2001
Claudia Zwingmann; Christiane Richter-Landsberg; Dieter Leibfritz
After incubation of glial cells with both 13C‐labeled and unlabeled glucose and alanine, 13C isotopomer analysis indicates two cytosolic pyruvate compartments in astrocytes. One pyruvate pool is in an exchange equilibrium with exogenous alanine and preferentially synthesizes releasable lactate. The second pyruvate pool, which is of glycolytic origin, is more closely related to mitochondrial pyruvate, which is oxidized via tri carbonic acid (TCA) cycle activity. In order to provide 2‐oxoglutarate as a substrate for cytosolic alanine aminotransferase, glycolytic activity is increased in the presence of exogenous alanine. Furthermore, in the presence of alanine, glutamate is accumulated in astrocytes without subsequent glutamine synthesis. We suggest that the conversion of alanine to releasable lactate proceeds at the expense of flux of glycolytic pyruvate through lactate dehydrogenase, which is used for ammonia fixation by alanine synthesis in the cytosol and for mitochondrial TCA cycle activity. In addition, an intracellular trafficking occurs between cytosol and mitochondria, by which these two cytosolic pyruvate pools are partly connected. Thus, exogenous alanine modifies astrocytic glucose metabolism for the synthesis of releasable lactate disconnected from glycolysis. The data are discussed in terms of astrocytic energy metabolism and the metabolic trafficking via a putative alanine‐lactate shuttle between astrocytes and neurons. GLIA 34:200–212, 2001.
Glia | 2000
Claudia Zwingmann; Christiane Richter-Landsberg; Annette Brand; Dieter Leibfritz
Nuclear magnetic resonance (NMR) spectroscopy and biochemical assays were used to study the fate of [3‐13C]alanine in astrocytes, neurons, and cocultures. 1H‐ and 13C‐NMR analysis of the media demonstrated a high and comparable uptake of [3‐13C]alanine by the cells. Thereafter, alanine is transaminated predominantly to [3‐13C]pyruvate, from which the 13C‐label undergoes different metabolic pathways in astrocytes and neurons: Lactate is almost exclusively synthesized in astrocytes, while in neurons and cocultures labeled neurotransmitter amino acids are formed, i.e., glutamate and γ‐aminobutyric acid (GABA). A considerable contribution of the anaplerotic pathway is observed in cocultures, as concluded from the ratio (C‐2–C‐3)/C‐4 of labeled glutamine. Analysis of the multiplet pattern of glutamate isotopomers indicates carbon scrambling through the TCA cycle and the use of alanine also as energy substrate in neurons. In cocultures, astrocyte‐deduced lactate and unlabeled exogenous carbon substrates contribute to glutamate synthesis and dilute the [2‐13C]acetyl‐CoA pool by 30%. The coupling of neuronal activity with shuttling of tricarboxylic acid (TCA) cycle‐derived metabolites between astrocytes and neurons is concluded from the use of [4‐13C]‐monolabeled glutamate leaving the first TCA cycle turn already for glutamine and GABA synthesis, as well as from the labeling pattern of extracellular glutamine. Further evidence of a metabolic interaction between astrocytes and neurons is obtained, as alanine serves as a carbon and nitrogen carrier through the synthesis and regulated release of lactate from astrocytes for use by neurons. Complementary to the glutamine‐glutamate cycle in the brain, a lactate‐alanine shuttle between astrocytes and neurons would account for the nitrogen exchange of the glutamatergic neurotransmitter cycle in mammalian brain. GLIA 32:286–303, 2000.
Hepatology | 2009
Nathan Davies; Gavin Wright; Lars M. Ytrebø; Vanessa Stadlbauer; Ole-Martin Fuskevåg; Claudia Zwingmann; D. Ceri Davies; Abeba Habtesion; Stephen J. Hodges; Rajiv Jalan
Treatment of hyperammonemia and hepatic encephalopathy in cirrhosis is an unmet clinical need. The aims of this study were to determine whether L‐ornithine and phenylacetate/phenylbutyrate (administered as the pro‐drug phenylbutyrate) (OP) combined are synergistic and produce sustained reduction in ammonia by L‐ornithine acting as a substrate for glutamine synthesis, thereby detoxifying ammonia, and the phenylacetate excreting the ornithine‐derived glutamine as phenylacetylglutamine in the urine. Sprague‐Dawley rats were studied 4 weeks after bile duct ligation (BDL) or sham operation. Study 1: Three hours before termination, an internal carotid sampling catheter was inserted, and intraperitoneal saline (placebo), OP, phenylbutyrate, or L‐ornithine were administered after randomization. BDL was associated with significantly higher arterial ammonia and brain water and lower brain myoinositol (P < 0.01, respectively), compared with sham‐operated controls, which was significantly improved in the OP‐treated animals; arterial ammonia (P < 0.001), brain water (P < 0.05), brain myoinositol (P < 0.001), and urinary phenylacetylglutamine (P < 0.01). Individually, L‐ornithine or phenylbutyrate were similar to the BDL group. In study 2, BDL rats were randomized to saline or OP administered intraperitoneally for 6 hours or 3, 5, or 10 days and were sacrificed between 4.5 and 5 weeks. The results showed that the administration of OP was associated with sustained reduction in arterial ammonia (P < 0.01) and brain water (P < 0.01) and markedly increased arterial glutamine (P < 0.01) and urinary excretion of phenylacetylglutamine (P < 0.01) in each of the OP treated groups. Conclusion: The results of this study provide proof of the concept that L‐ornithine and phenylbutyrate/phenylacetate act synergistically to produce sustained improvement in arterial ammonia, its brain metabolism, and brain water in cirrhotic rats. (HEPATOLOGY 2009.)
Hepatology | 2006
Claudia Zwingmann; Marc Bilodeau
The hepatoprotective mechanisms of N‐acetylcysteine (NAC) in non–acetaminophen‐induced liver injury have not been studied in detail. We investigated the possibility that NAC could affect key pathways of hepatocellular metabolism with or without changes in glutathione (GSH) synthesis. Hepatocellular metabolites and high‐energy phosphates were quantified from mouse liver extracts by 1H‐ and 31P‐NMR (nuclear magnetic resonance) spectroscopy. 13C‐NMR‐isotopomer analysis was used to measure [U‐13C]glucose metabolism through pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC). NAC (150‐1,200 mg/kg) increased liver concentrations of GSH from 8.60 ± 0.48 to a maximum of 12.95 ± 1.03 μmol/g ww, whereas hypotaurine (HTau) concentrations increased from 0.05 ± 0.02 to 9.95 ± 1.12 μmol/g ww. The limited capacity of NAC to increase GSH synthesis was attributed to impaired glucose metabolism through PC. However, 300 mg/kg NAC significantly increased the fractional 13C‐enrichment in Glu (from 2.08% ± 0.26% to 4.00% ± 0.44%) synthesized through PDH, a key enzyme for mitochondrial energy metabolism. This effect could be uncoupled from GSH synthesis and was associated with the prevention of liver injury induced by tert‐butylhydroperoxide and 3‐nitropropionic acid. In conclusion, NAC (1) has a limited capacity to elevate GSH synthesis; (2) increases HTau formation linearly; and (3) improves mitochondrial tricarboxylic acid (TCA) cycle metabolism by stimulation of carbon flux through PDH. This latter effect is independent of the capacity of NAC to replete GSH stores. These metabolic actions, among other yet unknown effects, are critical for NACs therapeutic value and should be taken into account when deciding on a wider use of NAC. (HEPATOLOGY 2006;43:454–463.)
Developmental Neuroscience | 2000
Claudia Zwingmann; Ulrich Flögel; Josef Pfeuffer; Dieter Leibfritz
NH4Cl (10 mM) caused a sustained increase in the cell volume in immobilized, perfused F98 glioma cells to approx. 125% of control after 3 h, as measured by diffusion-weighted 1H NMR spectroscopy. Concomitantly, the glutamine (Gln) concentration increased by 130%, accompanied by a marked decrease in cytosolic osmolytes, i.e. myo-inositol and taurine, determined from 1H NMR spectra of PCA extracts. Inhibition of Gln synthetase partially prevented the increase in water content. While losses of organic osmolytes are also observed under hypotonic conditions, the rapid cell swelling is followed by the regulatory cell volume decrease (RVD), and is accompanied by decreased cytosolic Gln. We suggest that the rise in intracellular osmolarity, which is attributed to NH4Cl metabolism to Gln, but also to alanine (Ala), is not compensated by the release of other osmolytes, and causes cell swelling without RVD.
Brain Research | 2004
Claudia Zwingmann; Nicolas Chatauret; Christopher F. Rose; Dieter Leibfritz; Roger F. Butterworth
The principal cause of mortality in patients with acute liver failure (ALF) is brain herniation resulting from intracranial hypertension caused by a progressive increase of brain water. In the present study, ex vivo high-resolution 1H-NMR spectroscopy was used to investigate the effects of ALF, with or without superimposed hypothermia, on brain organic osmolyte concentrations in relation to the severity of encephalopathy and brain edema in rats with ALF due to hepatic devascularization. In normothermic ALF rats, glutamine concentrations in frontal cortex increased more than fourfold at precoma stages, i.e. prior to the onset of severe encephalopathy, but showed no further increase at coma stages. In parallel with glutamine accumulation, the brain organic osmolytes myo-inositol and taurine were significantly decreased in frontal cortex to 63% and 67% of control values, respectively, at precoma stages (p<0.01), and to 58% and 67%, respectively, at coma stages of encephalopathy (p<0.01). Hypothermia, which prevented brain edema and encephalopathy in ALF rats, significantly attenuated the depletion of myo-inositol and taurine. Brain glutamine concentrations, on the other hand, did not respond to hypothermia. These findings demonstrate that experimental ALF results in selective changes in brain organic osmolytes as a function of the degree of encephalopathy which are associated with brain edema, and provides a further rationale for the continued use of hypothermia in the management of this condition.