Claudie Doums
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudie Doums.
Science | 2004
Morgan Pearcy; Serge Aron; Claudie Doums; Laurent Keller
The near-ubiquity of sexual reproduction in animal species has long been considered a paradox because sexually reproducing individuals transmit only half of their genome to their progeny. Here, we show that the ant Cataglyphis cursor circumvents this cost by using alternative modes of reproduction for the production of reproductive and nonreproductive offspring. New queens are almost exclusively produced by parthenogenesis, whereas workers are produced by normal sexual reproduction. By selectively using sex for somatic growth and parthenogenesis for germline production, C. cursor has taken advantage of the ant caste system to benefit from the advantages of both sexual and asexual reproduction.
Annual Review of Entomology | 2013
Adam L. Cronin; Mathieu Molet; Claudie Doums; Thibaud Monnin; Christian Peeters
The spectacular success of eusocial insects can be attributed to their sophisticated cooperation, yet cooperation is conspicuously absent during colony foundation when queens are alone. Selection against this solitary stage has led to a dramatically different strategy in thousands of eusocial insect species in which colonies are started by groups of nestmates and the benefits of sociality are retained continuously. Dependent colony foundation (DCF) evolved recurrently multiple times across the ants, bees, and wasps, though its prevalence in termites remains unclear. We review adaptations at both the colony level (reproductive investment shifts from sexuals to workers) and the individual level (wingless queens evolve in ants), and other consequences for life history (invasiveness, parasite transmission). Although few studies have focused on DCF, the accumulated data from anecdotal reports, supported by indirect information including morphology, population genetics, and colony demographics, make it clear that this strategy is more diverse and widespread than is usually recognized.
Molecular Ecology | 2002
Claudie Doums; Humberto Cabrera; Christian Peeters
In this study we investigated the population genetic structure of the queenless ant Diacamma cyaneiventre. This species, lacking winged queens, is likely to have a restricted female dispersal. We used both mitochondrial and microsatellite markers to assess the consequence of such restricted female dispersal at three geographical scales: within a given locality (< 1 km), between localities within a given region (< 10 km) and between regions (> 36 km). Within a locality, a strong population structure was observed for mitochondrial DNA (mtDNA) whereas weak or nonexistent population genetic structure was observed for the microsatellites (around 5% of the value for mtDNA). Male gene flow was estimated to be about 20–30 times higher than female gene flow at this scale. At a larger spatial scale, very strong genetic differentiation for both markers was observed between localities — even within a single region. Female dispersal is nonexistent at these scales and male dispersal is very restricted, especially between regions. The phylogeographical structure of the mtDNA haplotypes as well as the very low genetic diversity of mtDNA within localities indicate that new sites are colonized by a single migration event from adjacent localities, followed by successive colony fissions. These patterns of genetic variability and differentiation agree with what is theoretically expected when colonization events are kin‐structured and when, following colonization, dispersion is mainly performed by males.
Molecular Ecology | 2005
Johanna Clémencet; B. Viginier; Claudie Doums
Despite having winged queens, female dispersal in the monogynous ant Cataglyphis cursor is likely to be restricted because colonies reproduce by fission. We investigated the pattern of population genetic structure of this species using eight microsatellite markers and a mitochondrial DNA (mtDNA) sequence, in order to examine the extent of female and nuclear gene flow in two types of habitat. Sampling was carried out at a large spatial scale (16 sites from 2.5 to 120 km apart) as well as at a fine spatial scale (two 4.5‐km transects, one in each habitat type). The strong spatial clustering of mtDNA observed at the fine spatial scale strongly supported a restricted effective female dispersal. In agreement, patterns of the mtDNA haplotypes observed at large and fine spatial scales suggested that new sites are colonized by nearby sites. Isolation by distance and significant nuclear genetic structure have been detected at all the spatial scales investigated. The level of local genetic differentiation for mitochondrial marker was 15 times higher than for the nuclear markers, suggesting differences in dispersal pattern between the two sexes. However, male gene flow was not sufficient to prevent significant nuclear genetic differentiation even at short distances (500 m). Isolation‐by‐distance patterns differed between the two habitat types, with a linear decrease of genetic similarities with distance observed only in the more continuous of the two habitats. Finally, despite these low dispersal capacities and the potential use of parthenogenesis to produce new queens, no signs of reduction of nuclear genetic diversity was detected in C. cursor populations.
Evolution | 1996
Claudie Doums; Frédérique Viard; Anne-Frangoise Pernot; Bernard Delay; Philippe Jarne
This paper examines the consequences of self‐fertilization on life‐history traits and neutral genetic polymorphism in natural populations of three species of hermaphrodite freshwater snails: Biomphalaria straminea, Bulinus globosus, and the aphallic species Bulinus truncatus. Life‐history traits (fecundity, growth, hatching rate, and survival of offspring) are compared under laboratory conditions between isolated (obligatory selfing) and paired (outcrossing possible) snails in one population of B. straminea and B. globosus and two populations of B. truncatus. The genetic polymorphism of the same four populations is analyzed using electrophoretic markers in B. straminea and B. globosus and microsatellite markers in B. truncatus. In B. truncatus and B. straminea, isolated snails have a higher fecundity than paired snails, whereas the contrary is observed in B. globosus. For all populations, no difference in hatching rate and offspring survival is detected between the two treatments. Genetic analyses using microsatellite markers conducted in B. truncatus on progeny of paired snails reveal a high selfing rate in spite of high copulation rates, highlighting the difficulties of obtaining outcrossing in highly selfing snails. The high survival of selfed offspring in B. truncatus and B. straminea indicates that inbreeding depression is limited. The extent of inbreeding depression in B. globosus is less clear. Overall, fitness decrease in this species is limited to fecundity. The extent of allozyme polymorphism is very limited whereas a much higher variability is observed with microsatellites. Biomphalaria straminea and B. truncatus populations are also characterized by very low observed heterozygosities and large heterozygote deficiencies, whereas the B. globosus population does not exhibit such a deficiency. Overall these results allow the definition of a self‐fertilization syndrome in hermaphrodite freshwater snails: selfing populations (such as those of B. straminea and B. truncatus studied here) are characterized by high selfing rates in spite of copulations, limited deleterious effects of selfing, limited neutral genetic polymorphism, and large heterozygote deficiencies.
Behavioral Ecology and Sociobiology | 2001
Jean-Baptiste André; Christian Peeters; Claudie Doums
Abstract. Serial polygyny, defined as the temporal succession of several reproductive females in a colony, occurs in some monogynous social insects and has so far attracted little attention. Diacamma cyaneiventre is a queenless ponerine ant found in the south of India. Colonies are headed by one singly mated worker, the gamergate. After the death of the gamergate or her absence following colony fission, the gamergate is replaced by a newly eclosed nestmate worker. After a replacement, colonies go through short-lived periods in which two matrilines of sisters co-occur. This is a situation which can be described as serial polygyny. To measure the consequences of serial polygyny, a genetic analysis was performed on 449 workers from 46 colonies of D. cyaneiventre using five microsatellite loci. The presence of more than one matriline among workers of the same nest was detected in 19% of colonies, indicating a recent change of gamergate. The average genetic relatedness among nestmate workers was 0.751 and did not significantly differ from the theoretical expectation under strict monogyny and monandry (0.75). A simple analytical model of the temporal dynamics of serial polygyny was developed in order to interpret these results. We show that the rate of gamergate turnover relative to the rate of worker turnover is the crucial parameter determining the level of serial polygyny and its effect on the genetic structure of colonies. This parameter, estimated from our data, confirms that serial polygyny occurs in D. cyaneiventre but is not strong enough to influence significantly the average genetic relatedness among workers.
Journal of Evolutionary Biology | 2007
A. Bocher; Claire Tirard; Claudie Doums
Because immune defences are costly, life‐history theories predict a modulation of immune investment according to its potential benefits. Social insects provide interesting models since infection risk may vary among individuals within a colony. In particular, the foraging workers, that have to leave the nest, suffer a higher infection risk and can contaminate their nest, which may favour high immune investments. However, evolutionary theories of aging predict that foragers should reduce their immune investment when they suffer high extrinsic mortality. To test these two predictions, we investigated the levels of phenoloxidase (PO) and prophenoloxidase, two important enzymes of the insect immune system, in workers of the ant Cataglyphis velox. We found a higher PO activity in foragers than in intra‐nidal workers. This could result from an adaptive upregulation of the harmful PO (an enzyme potentially leading to autoimmune reactions) only when the risk of infection and wounding is high.
Forensic Science International | 2002
Jean-Bernard Myskowiak; Claudie Doums
The aim of this study was to simulate the low temperatures that insects could experience between the time being sampled from cadavers and their arrival in the laboratory. This was in order to investigate the effect of low temperature on development of maggots. At different stages of development, individuals of Protophormia terraenovae (Robineau-Desvoidy) reared at 24 degrees C were submitted to a temperature of 4.0+/-0.5 degrees C for a period varying from 1 to 10 days. Independent of the stage of development at which the insects were refrigerated, the treatment induced significant changes on the duration of development. The effect of low temperature on the developmental time between the return to 24 degrees C to adult emergence depended on the larval stage that was refrigerated. When first instar larvae and prepupae were refrigerated, the time to emergence at 24 degrees C decreased with an increase of duration of the refrigeration period. Time to emergence increased under the same conditions when second instar larvae and pupae were refrigerated. These results indicate that keeping larvae of P. terraenovae at 4 degrees C does not just simply lead to a cessation of metabolism but disturbs the regular development. Ten days of cooling induced an error in estimating post-mortem interval (PMI) of more than 6h.
Molecular Ecology | 2011
Blandine Chéron; Thibaud Monnin; Pierre Fédérici; Claudie Doums
In genetically diverse insect societies (polygynous or polyandrous queens), the production of new queens can set the ground for competition among lineages. This competition can be very intense when workers can reproduce using thelytoky as worker lineages that manage to produce new queens gain a huge benefit. Selection at the individual level might then lead to the evolution of cheating genotypes, i.e. genotypes that reproduce more than their fair share. We studied the variation in reproductive success among worker patrilines in the thelytokous and highly polyandrous ant Cataglyphis cursor. Workers produce new queens by thelytoky in orphaned colonies. The reproductive success of each patriline was assessed in 13 orphaned colonies using genetic analysis of 433 workers and 326 worker‐produced queens. Our results show that patrilines contributed unequally to queen production in half of the colonies, and the success of patrilines was function of their frequencies in workers. However, over all colonies, we observed a significant difference in the distribution of patrilines between workers and worker‐produced queens, and this difference was significant in three of 13 colonies. In addition, six colonies contained a low percentage of foreign workers (drifters), and in one colony, they produced a disproportionably high number of queens. Hence, we found some evidence for the occurrence of rare cheating genotypes. Nevertheless, cheating appears to be less pronounced than in the Cape Honey bee, a species with a similar reproductive system. We argue that worker reproduction by parthenogenesis might not be common in natural populations of C. cursor.
Molecular Ecology | 2004
B. Viginier; Christian Peeters; L. Brazier; Claudie Doums
We developed microsatellite markers and combined them with mitochondrial markers to analyse the population genetic structure of the queenless ant Diacamma indicum. This species, lacking winged queens, is likely to have a restricted female dispersal but exhibits various life history traits suggesting higher dispersal abilities than the other Diacamma species. Only 4 of 11 microsatellites were polymorphic and only 1 had more than 4 alleles over 166 individuals originating from 7 populations from the south of India. Only one mitochondrial DNA (mtDNA) haplotype was detected throughout India (including one population in the north) and Sri Lanka. Such a level of polymorphism is particularly low compared with other Diacamma species having much smaller ranges in the south of India. A strong genetic differentiation was observed between populations separated by more than a few kilometres. We also analysed the genetic differentiation between the Indian populations and two populations from the Japanese island of Okinawa, which are morphologically similar and might belong to the same species. The genetic differentiation was high for both markers, suggesting an absence of ongoing gene flow between these populations.