Claudine Kraft
Max F. Perutz Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudine Kraft.
Nature Cell Biology | 2010
Claudine Kraft; Matthias Peter; Kay Hofmann
Eukaryotic cells use autophagy and the ubiquitin–proteasome system as their major protein degradation pathways. Whereas the ubiquitin–proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.
The EMBO Journal | 2003
Claudine Kraft; Franz Herzog; Christian Gieffers; Karl Mechtler; Anja Hagting; Jonathon Pines; Jan-Michael Peters
The anaphase‐promoting complex (APC) or cyclosome is a ubiquitin ligase that initiates anaphase and mitotic exit. APC activation is thought to depend on APC phosphorylation and Cdc20 binding. We have identified 43 phospho‐sites on APC of which at least 34 are mitosis specific. Of these, 32 sites are clustered in parts of Apc1 and the tetratricopeptide repeat (TPR) subunits Cdc27, Cdc16, Cdc23 and Apc7. In vitro, at least 15 of the mitotic phospho‐sites can be generated by cyclin‐dependent kinase 1 (Cdk1), and 3 by Polo‐like kinase 1 (Plk1). APC phosphorylation by Cdk1, but not by Plk1, is sufficient for increased Cdc20 binding and APC activation. Immunofluorescence microscopy using phospho‐antibodies indicates that APC phosphorylation is initiated in prophase during nuclear uptake of cyclin B1. In prometaphase phospho‐APC accumulates on centrosomes where cyclin B ubiquitination is initiated, appears throughout the cytosol and disappears during mitotic exit. Plk1 depletion neither prevents APC phosphorylation nor cyclin A destruction in vivo. These observations imply that APC activation is initiated by Cdk1 already in the nuclei of late prophase cells.
Current Biology | 2004
Izabela Sumara; Juan F. Giménez-Abián; Daniel W. Gerlich; Toru Hirota; Claudine Kraft; Consuelo de la Torre; Jan Ellenberg; Jan-Michael Peters
BACKGROUND The stable association of chromosomes with both poles of the mitotic spindle (biorientation) depends on spindle pulling forces. These forces create tension across sister kinetochores and are thought to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint. Polo-like kinase 1 (Plk1) has been implicated in regulating centrosome maturation, mitotic entry, sister chromatid cohesion, the anaphase-promoting complex/cyclosome (APC/C), and cytokinesis, but it is unknown if Plk1 controls chromosome biorientation. RESULTS We have analyzed Plk1 functions in synchronized mammalian cells by RNA interference (RNAi). Plk1-depleted cells enter mitosis after a short delay, accumulate in a preanaphase state, and subsequently often die by apoptosis. Spindles in Plk1-depleted cells lack focused poles and are not associated with centrosomes. Chromosomes attach to these spindles, but the checkpoint proteins Mad2, BubR1, and CENP-E are enriched at many kinetochores. When Plk1-depleted cells are treated with the Aurora B inhibitor Hesperadin, which silences the spindle checkpoint by stabilizing microtubule-kinetochore interactions, cells degrade APC/C substrates and exit mitosis without chromosome segregation and cytokinesis. Experiments with monopolar spindles that are induced by the kinesin inhibitor Monastrol indicate that Plk1 is required for the assembly of spindles that are able to generate poleward pulling forces. CONCLUSIONS Our results imply that Plk1 is not essential for mitotic entry and APC/C activation but is required for proper spindle assembly and function. In Plk1-depleted cells spindles may not be able to create enough tension across sister kinetochores to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint.
Science Signaling | 2010
Bernd Bodenmiller; Stefanie Wanka; Claudine Kraft; Joerg Urban; David G. Campbell; Patrick G A Pedrioli; Bertran Gerrits; Paola Picotti; Henry H N Lam; Olga Vitek; Mi-Youn Brusniak; Bernd Roschitzki; Chao Zhang; Kevan M. Shokat; Ralph Schlapbach; Alejandro Colman-Lerner; Garry P. Nolan; Alexey I. Nesvizhskii; Matthias Peter; Robbie Loewith; Christian von Mering; Ruedi Aebersold
A system-wide analysis of protein phosphorylation in yeast reveals robustness in the network of kinases and phosphatases. Holistic Approach Protein kinases and phosphatases make attractive targets for therapies. Although various such enzymes have been characterized individually in vitro, an understanding of their roles in vivo, in the context of the entire network of kinases and phosphatases, is lacking. Indeed, inadequate knowledge of the downstream, indirect consequences of targeting a particular enzyme has led to the discontinuation of potential therapies. Bodenmiller et al. (listen to the accompanying Podcast) individually targeted most of the kinases and phosphatases in yeast, and they performed phosphoproteomic analysis of the effects of these deletions or mutations on the cellular phosphorylation network. They found that the network was surprisingly robust to perturbations in individual enzymes and that a large number of changes occurred in phosphoproteins that were not direct substrates of the targeted kinase or phosphatase. This approach should serve as a starting point toward understanding the complexity of phosphorylation regulation in yeast and other organisms. The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery—and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.
The EMBO Journal | 2012
Julia Romanov; Marta Walczak; Iosune Ibiricu; Stefan Schüchner; Egon Ogris; Claudine Kraft; Sascha Martens
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane‐bound vesicles termed autophagosomes. The conserved Atg5–Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5–Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5–Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre‐autophagosomal structure but is essential for autophagy and cytoplasm‐to‐vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5–Atg12/Atg16 complex during autophagosome formation.
The EMBO Journal | 2017
Lorenzo Galluzzi; Eric H. Baehrecke; Andrea Ballabio; Patricia Boya; José Manuel Bravo-San Pedro; Francesco Cecconi; Augustine M. K. Choi; Charleen T. Chu; Patrice Codogno; María I. Colombo; Ana Maria Cuervo; Jayanta Debnath; Vojo Deretic; Ivan Dikic; Eeva-Liisa Eskelinen; Gian Maria Fimia; Simone Fulda; David A. Gewirtz; Douglas R. Green; Malene Hansen; J. Wade Harper; Marja Jäättelä; Terje Johansen; Gábor Juhász; Alec C. Kimmelman; Claudine Kraft; Nicholas T. Ktistakis; Sharad Kumar; Beth Levine; Carlos López-Otín
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy‐related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy‐related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
Molecular Cell | 2014
Daniel Papinski; Martina Schuschnig; Wolfgang Reiter; Larissa Wilhelm; Christopher A. Barnes; Alessio Maiolica; Isabella Hansmann; Thaddaeus Pfaffenwimmer; Monika Kijanska; Ingrid Stoffel; Sung Sik Lee; Jane Hua Lou; Benjamin E. Turk; Ruedi Aebersold; Gustav Ammerer; Matthias Peter; Claudine Kraft
Summary Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes.
The EMBO Journal | 2012
Claudine Kraft; Monika Kijanska; Eyal Kalie; Edyta Siergiejuk; Sung Sik Lee; Giuseppe Semplicio; Ingrid Stoffel; Mayanka Verma; Isabella Hansmann; Gustav Ammerer; Kay Hofmann; Sharon A. Tooze; Matthias Peter
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)‐inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3‐interaction region (LIR)‐dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1–Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR‐dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.
Biochimica et Biophysica Acta | 2009
Claudine Kraft; Fulvio Reggiori; Matthias Peter
Autophagy is the process through which cytosol and organelles are sequestered into a double-membrane vesicle called an autophagosome and delivered to the vacuole/lysosome for breakdown and recycling. One of its primary roles in unicellular organisms is to regulate intracellular homeostasis and to adjust organelle numbers in response to stress such as changes in nutrient availability. In higher eukaryotes, autophagy plays also an important role in stress-response, development, cell differentiation, immunity and tumor suppression. Importantly, a misregulation in this catabolic pathway is associated with diseases such as cancer, neurodegeneration and myopathies. For a long time, starvation-induced autophagy has been considered a non-selective pathway, however, numerous recent observations revealed that autophagy can also selectively eliminate specific proteins, protein complexes and organelles. Most of these studies used yeast Saccharomyces cerevisiae as a model organism. In this compendium, we will review what is known about the mechanisms and roles of selective types of autophagy in yeast and highlight possible connections of these pathways with human diseases. In addition, we will discuss some selective types of autophagy, which have so far only been described in higher eukaryotes.
Nature Cell Biology | 2004
Claire Acquaviva; Franz Herzog; Claudine Kraft; Jonathon Pines
The anaphase promoting complex/cyclosome (APC/C) is crucial to the control of cell division (for a review, see ref. 1). It is a multi-subunit ubiquitin ligase that, at defined points during mitosis, targets specific proteins for proteasomal degradation. The APC/C is itself regulated by the spindle or kinetochore checkpoint, which has an important role in maintaining genomic stability by preventing sister chromatid separation until all chromosomes are correctly aligned on the mitotic spindle. The spindle checkpoint regulates the APC/C by inactivating Cdc20, an important co-activator of the APC/C. There is also evidence to indicate that the spindle checkpoint components and Cdc20 are spatially regulated by the mitotic apparatus, in particular they are recruited to improperly attached kinetochores. Here, we show that the APC/C itself co-localizes with components of the spindle checkpoint to improperly attached kinetochores. Indeed, we provide evidence that the spindle checkpoint machinery is required to recruit the APC/C to kinetochores. Our data indicate that the APC/C could be regulated directly by the spindle checkpoint.