Claudine Médigue
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudine Médigue.
PLOS Genetics | 2009
Marie Touchon; Claire Hoede; Olivier Tenaillon; Valérie Barbe; Simon Baeriswyl; Philippe Bidet; Edouard Bingen; Stéphane Bonacorsi; Christiane Bouchier; Odile Bouvet; Alexandra Calteau; Hélène Chiapello; Olivier Clermont; Stéphane Cruveiller; Antoine Danchin; Médéric Diard; Carole Dossat; Meriem El Karoui; Eric Frapy; Louis Garry; Jean Marc Ghigo; Anne Marie Gilles; James R. Johnson; Chantal Le Bouguénec; Mathilde Lescat; Sophie Mangenot; Vanessa Martinez-Jéhanne; Ivan Matic; Xavier Nassif; Sophie Oztas
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genomes long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.
Nature | 2006
Marc Strous; Eric Pelletier; Sophie Mangenot; Thomas Rattei; Angelika Lehner; Michael W. Taylor; Matthias Horn; Holger Daims; Delphine Bartol-Mavel; Patrick Wincker; Valérie Barbe; Nuria Fonknechten; David Vallenet; Béatrice Segurens; Chantal Schenowitz-Truong; Claudine Médigue; Astrid Collingro; Berend Snel; Bas E. Dutilh; Huub J. M. Op den Camp; Chris van der Drift; Irina Cirpus; Katinka van de Pas-Schoonen; Harry R. Harhangi; Laura van Niftrik; Markus Schmid; Jan T. Keltjens; Jack van de Vossenberg; Boran Kartal; Harald Meier
Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycles major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics—the reconstruction of genomic data directly from the environment—to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organisms special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.
Nature Biotechnology | 2003
Eric Duchaud; Christophe Rusniok; Lionel Frangeul; Carmen Buchrieser; Alain Givaudan; Sead Taourit; Stéphanie Bocs; Caroline Boursaux-Eude; Michael Chandler; Jean-François Charles; Elie Dassa; Richard Derose; Sylviane Derzelle; Georges Freyssinet; Claudine Médigue; Anne Lanois; Kerrie Powell; Patricia Siguier; Rachel Vincent; Vincent Paul Mary Wingate; Mohamed Zouine; Philippe Glaser; Noël Boemare; Antoine Danchin; Frank Kunst
Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.
Science | 2007
Eric Giraud; Lionel Moulin; David Vallenet; Valérie Barbe; Eddie Cytryn; Jean Christophe Avarre; Marianne Jaubert; Damien Simon; Fabienne Cartieaux; Yves Prin; Gilles Béna; Laura Hannibal; Joël Fardoux; Mila Kojadinovic; Laurie Vuillet; Aurélie Lajus; Stéphane Cruveiller; Zoé Rouy; Sophie Mangenot; Béatrice Segurens; Carole Dossat; William L. Franck; Woo Suk Chang; Elizabeth Saunders; David Bruce; Paul G. Richardson; Philippe Normand; Bernard Dreyfus; Gary Stacey; David W. Emerich
Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.
Nucleic Acids Research | 2006
David Vallenet; Laurent Labarre; Zoé Rouy; Valérie Barbe; Stéphanie Bocs; Stéphane Cruveiller; Aurélie Lajus; Géraldine Pascal; Claude Scarpelli; Claudine Médigue
Magnifying Genomes (MaGe) is a microbial genome annotation system based on a relational database containing information on bacterial genomes, as well as a web interface to achieve genome annotation projects. Our system allows one to initiate the annotation of a genome at the early stage of the finishing phase. MaGes main features are (i) integration of annotation data from bacterial genomes enhanced by a gene coding re-annotation process using accurate gene models, (ii) integration of results obtained with a wide range of bioinformatics methods, among which exploration of gene context by searching for conserved synteny and reconstruction of metabolic pathways, (iii) an advanced web interface allowing multiple users to refine the automatic assignment of gene product functions. MaGe is also linked to numerous well-known biological databases and systems. Our system has been thoroughly tested during the annotation of complete bacterial genomes (Acinetobacter baylyi ADP1, Pseudoalteromonas haloplanktis, Frankia alni) and is currently used in the context of several new microbial genome annotation projects. In addition, MaGe allows for annotation curation and exploration of already published genomes from various genera (e.g. Yersinia, Bacillus and Neisseria). MaGe can be accessed at .
Nucleic Acids Research | 2013
David Vallenet; Eugeni Belda; Alexandra Calteau; Stéphane Cruveiller; Stefan Engelen; Aurélie Lajus; François Le Fèvre; Cyrille Longin; Damien Mornico; David Roche; Zoé Rouy; Grégory Salvignol; Claude Scarpelli; Adam Alexander Thil Smith; Marion Weiman; Claudine Médigue
MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest.
PLOS ONE | 2008
David Vallenet; Patrice Nordmann; Valérie Barbe; Laurent Poirel; Sophie Mangenot; Elodie Bataille; Carole Dossat; Shahinaz Gas; Annett Kreimeyer; Patricia Lenoble; Sophie Oztas; Julie Poulain; Béatrice Segurens; Catherine Robert; Chantal Abergel; Jean-Michel Claverie; Didier Raoult; Claudine Médigue; Jean Weissenbach; Stéphane Cruveiller
Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil.
PLOS ONE | 2008
Mathieu Picardeau; Dieter M. Bulach; Christiane Bouchier; Richard L. Zuerner; Nora Zidane; Peter Wilson; Sophie Creno; Elizabeth Kuczek; Simona Bommezzadri; John Davis; Annette McGrath; Matthew Johnson; Caroline Boursaux-Eude; Torsten Seemann; Zoé Rouy; Ross L. Coppel; Julian I. Rood; Aurélie Lajus; John K. Davies; Claudine Médigue; Ben Adler
Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water.
Microbiology | 2009
Valérie Barbe; Stéphane Cruveiller; Frank Kunst; Patricia Lenoble; Guillaume Meurice; Agnieszka Sekowska; David Vallenet; Tingzhang Wang; Ivan Moszer; Claudine Médigue; Antoine Danchin
Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies.
Molecular Systems Biology | 2008
Véronique de Berardinis; David Vallenet; Vanina Castelli; Marielle Besnard; Agnès Pinet; Corinne Cruaud; Sumitta Samair; Christophe Lechaplais; Gabor Gyapay; Céline Richez; Maxime Durot; Annett Kreimeyer; François Le Fèvre; Vincent Schächter; Valérie Pezo; Volker Döring; Claude Scarpelli; Claudine Médigue; Georges N. Cohen; Philippe Marlière; Marcel Salanoubat; Jean Weissenbach
We have constructed a collection of single‐gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2‐3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches.