Claudine Weil
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudine Weil.
General and Comparative Endocrinology | 2003
F. Chauvigné; Jean-Charles Gabillard; Claudine Weil; Pierre-Yves Rescan
Fish endure long periods of fasting and demonstrate an extensive capacity for rapid and complete recovery after refeeding. The underlying mechanisms through which nutrient intake activates an increase in somatic growth and especially in muscle growth is poorly understood. In this study we examined the expression profile of major muscle growth regulators in trout white muscle 4, 12, and 34 days after refeeding, using real-time quantitative RT-PCR. Mean insulin-like growth factor I (IGFI) mRNA level in muscle increased dramatically 8- and 15-fold, 4 and 12 days, respectively, after refeeding compared to fasted trout. This declined thereafter. Conversely, only a weak but gradual increase in mean insulin-like growth factor II (IGFII) mRNA level was observed during refeeding. Inversely to IGFI, mean IGF receptor Ia (IGFRIa) mRNA level declined after ingestion of food. In contrast, IGF receptor Ib (IGFRIb) mRNA level was not affected by refeeding. Mean fibroblast growth factor 2 (FGF2) mRNA level increased by 2.5-fold both 4 and 12 days after refeeding, whereas fibroblast growth factor 6 (FGF6) and myostatin mRNA levels were unchanged. Subsequent to IGFI and FGF2 gene activation, an increase in myogenin mRNA accumulation was observed at 12 days post-refeeding suggesting that an active differentiation of myogenic cells succeeds their proliferation. In conclusion, among the potential growth factors we examined in this study, IGFI and FGF2 were identified as candidate genes whose expression may contribute to muscle compensatory growth induced by refeeding.
General and Comparative Endocrinology | 2003
Jean-Charles Gabillard; Claudine Weil; Pierre-Yves Rescan; Isabel Navarro; Joaquim Gutiérrez; Pierre-Yves Le Bail
Recently, we have demonstrated in rainbow trout that environmental temperature may, independently of nutritional status, directly stimulate plasma growth hormone (GH) that is recognised as being an insulin-like growth factor (IGF) system regulator. The aim of this study was to determine whether temperature may directly regulate the IGF system or indirectly regulate it through plasma GH or nutritional status. For this purpose, rainbow trout were reared at 8, 12, or 16 degrees C and fed either ad libitum (similar nutritional status) to evidence the global effect of temperature, or with the same ration (1.2% body weight/day), to determine the temperature effect in fish with the same growth rate. Endocrine and autocrine/paracrine regulations of the IGF system were determined by measuring plasma IGF1 and IGF2, liver and muscle IGF1 and IGF2 mRNA as well as IGFRIa, IGFRIb mRNA, and the quantity of IGF type I receptor in muscle. Our results show that neither rearing temperature nor the nutritional status of fish affected the expression of both IGF receptor genes in muscle. Nevertheless, the quantity of IGF type I receptor determined by a binding study, appeared to be inversely proportional (P<0.05) to the rearing temperature without any relationship with nutritional status, suggesting a direct effect of temperature on its turnover. After 2 weeks of treatment, the levels of IGF1 mRNA in muscle at 8 degrees C were 2-fold higher (P<0.05) than at 16 degrees C in both ad libitum and restricted feed fish, whereas after 6 weeks, this difference was no longer observed. In both experiments, the levels of plasma IGF2 were 10-fold higher than the levels of plasma IGF1 (mean 105+/-3.0 versus 13.5+/-0.6 ng/ml), and plasma levels were correlated with their respective mRNA liver concentrations (r2=0.14 and 0.25, respectively; P<0.01). In the ad libitum feeding experiment, plasma and mRNA levels of IGF1 were related to the rearing temperature (P<0.05), while for IGF2 no effect was seen. In contrast, in the restricted feeding experiment, plasma and IGF2 mRNA levels were inversely proportional to the rearing temperature (P<0.0001) while plasma IGF1 was unaltered. Levels of plasma IGF1 were related to the growth rate in both experiments, while levels of plasma IGF2 appeared to be associated with the nutritional status of the fish. Our results suggest that the autocrine/paracrine expression of IGF1 and IGF2 in muscle is not a key regulator of the growth promoting effect of temperature. Conversely, temperature seems to promote growth through IGF1 secretion by the liver following GH stimulation, and impairment of nutritional status would prevent the IGF1 stimulation by temperature. In addition, the growth-promoting effect of temperature did not affect plasma IGF2, which appeared to be more related to the metabolic status of the fish.
General and Comparative Endocrinology | 1991
P.Y. Le Bail; John P. Sumpter; John F. Carragher; Brigitte Mourot; Ping-De Niu; Claudine Weil
This study describes the development of a highly specific and very sensitive radioimmunoassay for salmonid growth hormone. Antiserum raised against chinook (Oncorhynchus tshawytscha) GH2, which did not recognize 125I-sPRL and 125I-sGTH (at 1:1000 initial dilution), was able to inhibit growth when injected into rainbow trout (Oncorhynchus mykiss). 125I-sGH2, used as tracer, was not recognized by anti-sGTH or by anti-sPRL. Mammalian GH and ACTH and salmonid GTH, TSH, and PRL did not cross-react in the sGH assay. The inhibition curves for pituitary extracts and plasma from salmonids were parallel to the salmon GH standard, whereas those from carp, tilapia, and catfish showed no significant cross reactivity. The RIA ED90 and ED50 values were 0.2 and 1.5 ng/ml, respectively. Using this RIA for measuring GH release by cultured pituitary cell we observed a strong inhibiting effect of SRIF (10(-6) M) and a stimulatory effect of hGRF (10(-6) M). This RIA allowed us also to detect daily fluctuations in the plasma GH concentration in cannulated rainbow trout.
Aquaculture | 1990
Bernard Breton; Claudine Weil; Elisabeth Sambroni; Yonathan Zohar
Abstract The effects of different forms of GnRHa (sustained vs. acute) on the stimulation of gonadotropin secretion and the rate of ovulation were investigated in the rainbow trout, Oncorhynchus mykiss . A biodegradable sustained release form of DTrp 6 LH-RH induced a progressive rise in the gonadotropin plasma levels in a dose-dependent manner. The stimulation of gonadotropin secretion was maintained for 3 weeks. All fish ovulated within 5 days after injection using a high dosage (50 μg/kg body weight) whereas with the lower dosages (25 and 12.5 μg/kg body weight) 100% ovulation was reached after 8 days. In contrast, acute injections of GnRHa (20 μg/kg body weight) induced a transient stimulation of gonadotropin secretion. Ovulation rates were first accelerated within 8–10 days and then remained stable but they did not reach 100% 26 days after the injection. At that time the rate of ovulation in the control group had increased to 70%. These results are discussed, along with a comparison of variability of egg quality with treatments.
Endocrinology | 1999
Claudine Weil; F. Carré; O. Blaise; Bernard Breton; P.Y. Le Bail
The short-term effect of insulin-like growth factor I (IGF-I) on GTH I (FSH-like), GTH II (LH-like), and GH production by cultured rainbow trout pituitary cells was studied in immature fish of both sexes, at early gametogenesis and in spermiating and periovulatory animals. IGF-I had no effect on basal GTH I and GTH II release, whereas it always inhibited basal GH, showing decreasing intensity with the gonad maturation. In absence of IGF-I, GTH I and GTH II cells were always responsive to GnRH, whereas no response was observed for GH cells whatever the sexual stage. The action of IGF-I on the sensitivity to GnRH differs between GTH and GH cells. The former requires a coincubation with IGF−I (10−6 m)/GnRH to show an increase in sensitivity, independent of the sexual stage. To be responsive to GnRH, the GH cells require longer exposure to IGF-I, the efficiency of which decreases with gonad maturation. The action of IGF-I (10−6 m) on GTH cell sensitivity to GnRH does not seem to be related to a mitogenic effe...
General and Comparative Endocrinology | 2003
Claudine Weil; P.Y. Le Bail; Nathalie Sabin; F. Le Gac
The short-term effect of recombinant human leptin (rhleptin) on FSH and LH production (release+intracellular content) was studied in vitro using pituitary cells from male and female rainbow trout during the first gametogenesis cycle. In our rearing conditions, we found a direct action of rhleptin at the pituitary level, which depends on the sexual stage of the fish. No effect of rhleptin on FSH or LH release and cellular content could be detected in immature fish and post-ovulatory females. However, throughout the process of spermatogenesis and ovogenesis, high concentrations (0.5 and 1 x 10(-6)M) of rhleptin stimulated FSH and LH release, without observable action on intracellular content of gonadotropins. A relatively constant response to rhleptin for FSH was observed throughout gonad maturation, while LH response tended to be higher at the first stages of gametogenesis (beginning of spermatogenesis and endogenous vitellogenesis). Preliminary results on the potential interaction of rhleptin and salmon GnRH (sGnRH) suggest a possible synergistic effect of high concentration of rhleptin (10(-6)M) and sGnRH only at restricted phases of gonadal development when the gametogenetic process was already fully started (full spermatogenesis and early vitellogenesis). The direct action of leptin on FSH and LH release, evident only when gametogenesis had already started suggests that leptin is not the unique signal for the activation of the gonadotropic axis but requires a combined action with other promoting factors.
General and Comparative Endocrinology | 1986
Claudine Weil; P. Hansen; D. Hyam; F. Le Gac; Bernard Breton; Laurence W. Crim
To study the regulation of gonadotropin secretion in rainbow trout in vitro, a method for preparing primary cultures of dispersed pituitary cells is described. Cells were dispersed by collagenase 0.1% in Hanks saline solution for 20 hr at 12 degrees and a high yield of viable cells was obtained. Attempts to improve cell functioning were made by varying culture conditions (density of cells initially plated, age of the culture). Cell functioning was assessed by their ability to respond to increasing doses of mammalian and salmon GnRH. Pituitaries were collected from spermiating males whose pituitaries are known to be sensitive to mammalian GnRH in vivo. Using 96-well plates, optimal conditions for good biological activity, are initial plating with 6.2 X 10(4) cells, incubation with GnRH for 24 hr on the third day after plating. In these conditions mammalian analog and salmon GnRH induced an increase in GtH release for doses ranging from 10(-9) to 10(-6) M. The GtH released during the GnRH incubation period does not decrease the sensitivity of the system since addition of 20 ng of GtH at the beginning of incubation does not modify the response profile.
Reviews in Fish Biology and Fisheries | 2013
Claudine Weil; Florence Lefèvre; Jérôme Bugeon
Lipids are the predominant source of energy for fish and are stored in fat depots in different parts of the body regions. This review focuses on visceral, subcutaneous and intramuscular adipose tissues that interfere with carcass and fillet yields and with flesh quality. The morphological, cellular and biochemical characteristics of these tissues are discussed as well as the different mechanisms involved in the regulation of their lipid metabolism. Particular emphasis is given to the modulation of these characteristics and mechanisms by different extrinsic (food composition, water parameters) and intrinsic (selective breeding, life cycle status) factors. This review focuses on recent studies that take into account the present challenges of fin-fish aquaculture, which are principally (1) the replacement of fish oil and meal by vegetable oil and meal due to the need for sustainability and the limited availability of fish to prepare food pellets, and (2) selective breeding programs to improve fish growth and flesh quality. These studies apply various modern technologies to different fish species, including the development of cell culture systems and transcriptomic and proteomic techniques. This review highlights that fish adipose tissues differ in their localization and their morphological characteristics and that they show a large plasticity in their responses to variations of both extrinsic and intrinsic factors. These different responses reinforce the idea of their differential participation in fish lipid homeostasis.
General and Comparative Endocrinology | 2003
Jean-Charles Gabillard; Claudine Weil; Pierre-Yves Rescan; Isabel Navarro; Joaquim Gutiérrez; Pierre-Yves Le Bail
Like many poecilotherms, salmonids exhibit seasonal variations of growth rate in relation with seasonal temperatures and plasma GH level. However, temperature alters other parameters like food intake, which may directly modify the level of plasma GH. In order to determine whether temperature regulates plasma GH levels independently of nutritional status, fish were reared at 8, 12, or 16 degrees C and either fed ad libitum (fish with different food intake) to determine the global effect of temperature, or with the same ration (1.2%/body weight) to observe the temperature effect in fish with the same growth rate. Plasma insulin level was inversely proportional to the temperature (8, 12, and 16 degrees C) in fish fed ad libitum (12.1+/-0.3 ng/ml, 10.9+/-0.3 ng/ml, 9.5+/-0.4 ng/ml; P<0.001) and in restricted fish (14.0+/-0.3 ng/ml, 11.3+/-0.3 ng/ml, 10.0+/-0.2 ng/ml; P<0.0001), probably due to a prolonged nutrient absorption, and delayed recovery of basal insulin level at low temperature. Conversely, temperature did not affect plasma T3 level of fish fed ad libitum (2.5+/-0.2 ng/ml, 2.4+/-0.1 ng/ml, 2.5+/-0.1 ng/ml at 8, 12, and 16 degrees C) while fish fed with the same ration present less T3 at 16 degrees C than at 8 degrees C (1.83+/-0.1 ng/ml versus 1.2+/-0.1 ng/ml; P<0.001) throughout the experiment; these observations indicate that different plasma T3 levels reflect the different nutritional status of the fish. The levels of GH1 and GH2 mRNA, and GH1/GH2 ratio were not different for whatever the temperature or the nutritional status. Pituitary GH content, of fish fed ad libitum did not exhibit obvious differences at 8, 12, or 16 degrees C (254+/-9 ng/g bw, 237+/-18 ng/g bw, 236+/-18 ng/g bw), while fish fed with the same ration have higher pituitary GH contents at 16 degrees C than at 8 degrees C (401+/-30 ng/g bw versus 285+/-25 ng/g bw; P<0.0001). Interestingly, high temperature strongly increases plasma GH levels (2.5+/-0.3 ng/ml at 8 degrees C versus 4.8+/-0.6 ng/ml at 16 degrees C; P<0.0001) to the same extent in both experiments, since at a given temperature average plasma GH was similar between fish fed ad libitum or a restricted diet. Our results, demonstrate that temperature regulates plasma GH levels specifically but not pituitary GH content, nor the levels of GH1 and GH2 mRNA. In addition no differential regulation of both GH genes was evidenced whatever the temperature.
Comptes Rendus De L Academie Des Sciences Serie Iii-sciences De La Vie-life Sciences | 1997
Bernard Breton; Elisabeth Sambroni; Marina Govoroun; Claudine Weil
Using specific radio-immunoassays for rainbow trout GTH I and GTH II, the effects of testosterone and estradiol 17 beta have been studied or reinvestigated on the regulation of the secretion and the synthesis of the these two pituitary gonadotropins in the immature rainbow trout. After steroid implantation, the GTH II pituitary concentration is stimulated by testosterone and estradiol 17 beta for the entire period during which the plasma levels of these hormones are maintained to values comparable to those measured in the adult vitellogenic female rainbow trout. On the other hand, only testosterone induced a transient increase in the GTH I pituitary content 15 days after implantation, and estradiol provoked a decrease at day 30. The secretion of both GTH I and GTH II is stimulated by testosterone but not by estradiol 17 beta. Altogether, these results show that in the immature rainbow trout, testosterone preferentially modifies GTH I secretion, but not that of GTH II. They confirm that the stimulation of GTH II accumulation after testosterone or estradiol treatment would correspond to a stimulation of hormone synthesis. They evidence a differential action of both steroids on the synthesis of the two gonadotropins, especially a possible inhibition of GTH I synthesis by estradiol. They let suppose that the regulation of GTH I synthesis would involve factors other than steroids.