Claudio Alberto Serfaty
Federal Fluminense University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Alberto Serfaty.
Brain Research | 1999
Elisa Ferreira Bastos; Joyce Lira de Souza Marcelino; Angélica Rocha Amaral; Claudio Alberto Serfaty
We studied the effect of fluoxetine, a selective serotonin reuptake inhibitor, in the development and lesion-induced plasticity of retinotectal axons in pigmented rats. Neonatal rats received a daily injection of either fluoxetine or vehicle from postnatal day 1 (PND 1) to PND 10 or from PND 14 to PND 28 (fluoxetine, 7.5 and 10.0 mg/kg, respectively). In the latter group, some animals received a single lesion at the temporal periphery of the left retina at PND 21. Unoperated animals were use as the control. At the end of the treatment, the animals received an intraocular injection of horseradish peroxidase (HRP) in the right (intact) eye to trace the uncrossed retinotectal pathway. Chronic fluoxetine treatment, induced, in unoperated rats, an expansion of the retinal terminal fields along the rostro-caudal axis of the tectum both in the PND 10 and PND 28 groups. Following a retinal lesion in the left eye at PND 21, the vehicle-treated group showed a small reorganization of the intact uncrossed projection. In this group only a few terminals were labeled invading the denervated tectal surface one-week after the lesion. Fluoxetine-treated animals on the other hand, showed a great amplification of plasticity with a conspicuous sprouting of the uncrossed retinal axons into denervated areas. The data suggest that fluoxetine induces extensive axonal rearrangements in neonatal and juvenile central nervous system and amplifies neuroplasticity following retinal lesions late in development.
Experimental Neurology | 2008
Éricka M.C. González; Letícia Abel Penedo; Priscilla Oliveira-Silva; Paula Campello-Costa; Rubem Carlos Araújo Guedes; Claudio Alberto Serfaty
The specification of sensory neural circuits includes the elimination of transitory axon collaterals/synapses that takes place during early post natal life, an important step for the acquisition of topographical order of sensory systems. Serotonin has been implicated in the patterning of connections in subcortical and cortical circuits. We investigated the effects of the dietary restriction of the only serotonin precursor, tryptophan, on the development of the uncrossed retinotectal pathway in pigmented rats. Litters were fed through their mothers with either a tryptophan restricted, corn and gelatin based diet or a similar control diet complemented with tryptophan during the lactation period. The developmental status of the uncrossed retinotectal terminal fields was studied after the anterograde transport of horseradish peroxidase injected into one eye. We also studied the effects of tryptophan restriction on 5-HT immunoreactivity of raphe neurons, on cAMP levels in the visual layers of the superior colliculus and on protein synthesis among retinal neurons. We found that tryptophan restriction resulted in reduced weight gain among tryptophan restricted rats, without differences in protein synthesis between tryptophan complemented and restricted groups. Tryptophan restriction was also associated with a reduction of serotonin immunoreactive cells in the raphe nuclei and increased cAMP levels in the superior colliculus. Finally we found that neonatal tryptophan restriction resulted in an abnormal patterning of retinotectal topography, which was consistent with a developmental delay in axonal elimination and fine tuning of central connections. These results suggest, therefore, that dietary tryptophan is crucial for the influence of serotonin in the maturation of central visual connections.
Experimental Neurology | 2012
Patricia Coelho de Velasco; Henrique Rocha Mendonça; Juliana Maria Carrazzone Borba; Belmira Lara da Silveira Andrade da Costa; Rubem Carlos Araújo Guedes; Daniela Maria do Amaral Ferraz Navarro; Geanne K.N. Santos; Adriana da Cunha Faria-Melibeu; Paula Campello Costa; Claudio Alberto Serfaty
The development and maturation of sensory systems depends on the correct pattern of connections which occurs during a critical period when axonal elimination and synaptic plasticity are involved in the formation of topographical maps. Among the mechanisms involved in synaptic stabilization, essential fatty acids (EFAs), available only through diet, appear as precursors of signaling molecules involved in modulation of gene expression and neurotransmitter release. Omega-3 fatty acids, such as docosahexaenoic acid (DHA), are considered EFAs and are accumulated in the brain during fetal period and neonatal development. In this study, we demonstrated the effect of omega-3/DHA nutritional restriction in the long-term stabilization of connections in the visual system. Female rats were fed 5 weeks before mating with either a control (soy oil) or a restricted (coconut oil) diet. Litters were fed until postnatal day 13 (PND13), PND28 or PND42 with the same diets when they received an intraocular injection of HRP. Another group received a single retinal lesion at the temporal periphery at PND21. Omega-3 restriction induced an increase in the optical density in the superficial layers of the SC, as a result of axonal sprouting outside the main terminal zones. This effect was observed throughout the SGS, including the ventral and intermediate sub-layers at PND13 and also at PND28 and PND42. The quantification of optical densities strongly suggests a delay in axonal elimination in the omega3(-) groups. The supplementation with fish oil (DHA) was able to completely reverse the abnormal expansion of the retinocollicular projection. The same pattern of expanded terminal fields was also observed in the ipsilateral retinogeniculate pathway. The critical period window was studied in lesion experiments in either control or omega-3/DHA restricted groups. DHA restriction induced an increased sprouting of intact, ipsilateral axons at the deafferented region of the superior colliculus compared to the control group, revealing an abnormal extension of the critical period. Finally, in omega-3 restricted group we observed in the collicular visual layers normal levels of GAP-43 with decreased levels of its phosphorylated form, p-GAP-43, consistent with a reduction in synaptic stabilization. The data indicate, therefore, that chronic dietary restriction of omega-3 results in a reduction in DHA levels which delays axonal elimination and critical period closure, interfering with the maintenance of terminal fields in the visual system.
Neuroimmunomodulation | 2008
Claudio Alberto Serfaty; Priscilla Oliveira-Silva; Adriana da Cunha Faria Melibeu; Paula Campello-Costa
Tryptophan is an essential amino acid and metabolic precursor of serotonin. Serotonin is both a classical neurotransmitter and a signaling molecule that plays crucial roles in the development of neural circuits and plasticity. The specification of neural circuits in rodents occurs during the postnatal period with conspicuous influence of environmental factors including the nutritional status. Sensory, motor and cognitive systems develop during a critical period, a time window that is crucial to the use-dependent organization of neuronal circuits. This review presents recent experimental findings that disclose some mechanism of tryptophan- and serotonin-dependent plasticity in the developing and adult brain.
Neuroimmunomodulation | 2007
Priscilla Oliveira-Silva; Patricia B. Jurgilas; Pablo Trindade; Paula Campello-Costa; Jonas Perales; Wilson Savino; Claudio Alberto Serfaty
Objective: During postnatal development, retinotectal projections undergo a process of misplaced axon elimination, leading to a topographical matching between the retinal surface and the superior colliculus. Matrix metalloproteinases (MMPs) have been implicated in the development and plasticity of the nervous system. We studied the expression and role of MMPs during normal development of retinotectal projections and after monocular enucleation-induced plasticity. Material and Methods: Lister hooded rats at different postnatal ages received subpial ethylene vinyl acetate 40W implants to deliver an MMP inhibitor or vehicle to the superior colliculus. Animals received intraocular injections of horseradish peroxidase for anterograde tracing of ipsilateral projections. For immunoblotting and zymography, colliculi were removed without fixation. Results: We observed the highest MMP activity in the first postnatal week, with decreasing activity thereafter. Monocular enucleation at postnatal day 10 yielded a rapid increase in MMP activity, 24 h following denervation of the contralateral colliculus. Importantly, inhibition of MMP activity in vivo induced a marked delay of axonal clustering along the medial aspect of colliculus. Conclusions: Our data indicate that MMPs are crucial in retinotectal development concurring to the fine tuning of topographical order and synaptic specificity of these connections.
Neuroscience | 2006
P. Campello-Costa; A.M. Fosse-Júnior; P. Oliveira-Silva; Claudio Alberto Serfaty
The uncrossed retinotectal projection of rats undergoes extensive axonal elimination and subsequent growth of axonal arbors in topographically appropriate territories within the first two/three postnatal weeks. Nitric oxide has been implicated in development and stabilization of synapses in the retinotectal pathway since blockade of nitric oxide synthesis disrupts the normal pattern of retinal innervation in subcortical nuclei. The present work investigated the role of arachidonic acid pathway in the development and maintenance of ipsilateral retinotectal axons. We also investigated the role of this retrograde messenger in the modulation of plasticity that follows retinal lesions in the opposite eye. Pigmented rats received systemic treatment with quinacrine, a phospholipase A2 inhibitor, indomethacin, a cyclooxygenase inhibitor, nordihydroguaiaretic acid, a 5-lipoxygenase inhibitor or vehicle during 4-8 days at various postnatal ages. Rats given a unilateral temporal retinal lesion were treated with either quinacrine or vehicle during the same period. For anterograde tracing of ipsilateral retinal projections, animals received intraocular injections of horseradish peroxidase. Before the third postnatal week no difference was observed in the laminar or topographic organization of the ipsilateral retinotectal projection between vehicle and treated rats in either normal or lesion conditions. After the third postnatal week, however, systemic blockade of phospholipase A2 or 5-lipoxygenase, but not cyclooxygenase induced sprouting of uncrossed axons throughout the collicular visual layers in unoperated rats. In retinal lesion groups, phospholipase A2 blockade increased the sprouting of uncrossed intact axons to the collicular surface in the same period. The results suggest that arachidonic acid or lipoxygenase metabolites play a role in the maintenance of the retinotectal synapses after the critical period and that the blockade of the arachidonic acid pathway induces reactive sprouting of retinal axons late in development.
Experimental Neurology | 2009
Letícia Abel Penedo; Priscilla Oliveira-Silva; Éricka M.C. González; Rafaela Maciel; Patricia B. Jurgilas; Adriana da Cunha Faria Melibeu; Paula Campello-Costa; Claudio Alberto Serfaty
The use-dependent specification of neural circuits occurs during post-natal development with a conspicuous influence of environmental factors, such as malnutrition that interferes with the major steps of brain maturation. Serotonin (5-HT), derived exclusively from the essential aminoacid tryptophan, is involved in mechanisms of development and use-dependent plasticity of the central nervous system. We studied the effects of the nutritional restriction of tryptophan in the plasticity of uncrossed retinotectal axons following a retinal lesion to the contralateral retina during the critical period in pigmented rats. Litters were fed through their mothers with a low tryptophan content diet, based on corn and gelatin, a complemented diet with standard tryptophan requirements for rodents or standard laboratory diet. The results suggest a marked reduction in the plasticity of intact axons into denervated territories in the tryptophan restricted group in comparison to control groups. Tryptophan complementation between PND10-21 completely restored retinotectal plasticity. However, the re-introduction of tryptophan after the end of the critical period (between PND28-P41) did not restore the sprouting ability of uncrossed axons suggesting a time-dependent effect to the reversion of plasticity deficits. Tryptophan-restricted animals showed a reduced activity of matrix metalloproteinase-9 and altered expressions of phosphorylated forms of ERK1/2 and AKT. Our results demonstrate the influence of this essential aminoacid as a modulator of neural plasticity during the critical period through the reduction of serotonin content which alters plasticity-related signaling pathways and matrix degradation.
Neuroscience Letters | 2010
Henrique Rocha Mendonça; Sheila Espírito Santo Araújo; Ana Lúcia Tavares Gomes; Alfred Sholl-Franco; Adriana da Cunha Faria Melibeu; Claudio Alberto Serfaty; Paula Campello-Costa
The retinotectal projection of rodents presents a precise retinotopic organization that develops, from diffuse connections, from the day of birth to post-natal day 10. Previous data had demonstrated that these projections undergo reorganization after retinal lesions, nerve crush and monocular enucleation. The axonal growth seems to be directly related to growth-associated protein-43 (GAP-43) expression, a protein predominantly located in growth cones, which is regulated throughout development. GAP-43 is presented both under non-phosphorylated and phosphorylated (pGAP-43) forms. The phosphorylated form, has been associated to axon growth via polymerization of F-actin, and synaptic enhancement through neurotransmitter release facilitation. Herein we investigated the spatio-temporal expression of GAP-43 in the rat superior colliculus during normal development and after monocular enucleation in different stages of development. Lister Hooded rats ranging from post-natal day 0 to 70 were used for ontogeny studies. Another group of animals were submitted to monocular enucleation at post-natal day 10 (PND10) or PND21. After different survival-times, the animals were sacrificed and the brains processed for either immunohistochemistry or western blotting analysis. Our data show that GAP-43 is expressed in retinotectal axons in early stages of development but remains present in adulthood. Moreover, monocular enucleation leads to an increase in pGAP-43 expression in the deafferented colliculus. Taken together these results suggest a role for pGAP-43 in retinotectal morphological plasticity observed both during normal development and after monocular enucleation.
Neuroscience | 2012
S. Espírito-Santo; Henrique Rocha Mendonça; G.D. Menezes; V.G. Goulart; Ana Lúcia Tavares Gomes; C. Marra; Adriana da Cunha Faria Melibeu; Claudio Alberto Serfaty; Alfred Sholl-Franco; Paula Campello-Costa
Interleukin-2 (IL-2) plays regulatory functions both in immune and nervous system. However, in the visual system, little is known about the cellular types which respond to IL-2 and its effects. Herein, we investigated the influence of IL-2 in the development of central visual pathways. Lister Hooded rats were submitted to multiple (at postnatal days [PND]7/10/13) or single (at PND10) intravitreous injections of phosphate-buffered saline (PBS) (vehicle), zymosan, or IL-2. IL-2 receptor α subunit was detected in the whole postnatal retina. Chronic treatment with either PBS or IL-2 increases retinal glial fibrillary acidic protein (GFAP) expression, induces intravitreous inflammation revealed by the presence of macrophages, and results in a slight rearrangement of retinotectal axons. Acute zymosan treatment disrupts retinotectal axons distribution, confirming the influence of inflammation on retinotectal pathway reordering. Furthermore, acute IL-2 treatment increases GFAP expression in the retina without inflammation and produces a robust sprouting of the intact uncrossed retinotectal pathway. No difference was observed in glial cells activity in superior colliculus. Taken together, these data suggest that inflammation and interleukin-2 modulate retinal ganglion cells development and the distribution of their axons within central targets.
Neuroscience Letters | 2011
P. Trindade; R. Antonioli-Santos; A.C. Teixeira; B. Lanzillotta-Mattos; Adriana da Cunha Faria Melibeu; Paula Campello-Costa; Rafael Linden; Claudio Alberto Serfaty
The fine-tuning of topographically organized projections in sensory systems is strongly influenced by electrical activity and use-dependent modifications in synaptic strength. Since calcineurin (CaN), a Ca(2+)-calmodulin dependent serine/threonine phosphatase has been associated with activity-dependent modifications in synaptic efficacy we studied the effects of systemic and local administration of CaN inhibitors during the critical period of development of the uncrossed retinocollicular projection in pigmented rats. We found that the expression of the catalytic subunit of calcineurin (CaNA) occurs throughout early development in the visual layers of the superior colliculus and peaks at PND14 when eye opening is complete. The functional blockade of CaN activity by means of a systemic treatment with cyclosporine A (CsA) during the second postnatal week, induces sprouting of uncrossed retinal axons outside their main terminal zones. Additionally, the local treatment with intracranial implants of Elvax loaded with either CsA or a cell-permeable CaN inhibitory peptide (CIP) resulted in a similar expansion of retinocollicular terminal fields. Taken together, these results suggest CaN as a key element for the development of fine tuning of retinocollicular topography.