Claudio Arezzo
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Arezzo.
Duke Mathematical Journal | 2011
Claudio Arezzo; Frank Pacard; Michael F. Singer
In this paper we provide conditions that are sufficient to guarantee the existence of extremal metrics on blowups at finitely many points of Kahler manifolds which already carry an extremal metric. As a particular case, we construct extremal metrics on
Journal of Geometry and Physics | 2003
Claudio Arezzo; Andrea Loi
\mathbb {P}^2
Crelle's Journal | 2006
Claudio Arezzo; Alessandro Ghigi; Gian Pietro Pirola
blown-up k points in general position, with
Journal of Geometric Analysis | 2007
Claudio Arezzo; Alessandro Ghigi; Andrea Loi
k \lt m+2
International Mathematics Research Notices | 2012
Claudio Arezzo; Alberto Della Vedova; Gabriele La Nave
.
Bollettino Della Unione Matematica Italiana | 2018
Claudio Arezzo; Alberto Della Vedova; Riccardo Lena; Lorenzo Mazzieri
In this paper we study the link between the asymptotic expansion of Tian–Yau–Zelditch [J. Diff. Geom. 32 (1990) 99] and the quantization of compact Kahler manifolds carried out in [J. Geophys. 7 (1990) 45; Trans. Am. Math. Soc. 337 (1993) 73].
Advances in Mathematics | 2011
Claudio Arezzo; Alberto Della Vedova
Abstract We consider Fano manifolds M that admit a collection of finite automorphism groups G 1, …, Gk , such that the quotients M/Gi are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that M admits a Kähler-Einstein metric too.
Archive | 2014
Claudio Arezzo
AbstractIn this article we study the first eigenvalue of the Laplacian on a compact manifold using stable bundles and balanced bases. Our main result is the following: Let M be a compact Kähler manifold of complex dimension n and E a holomorphic vector bundle of rank r over M. If E is globally generated and its Gieseker point Te is stable, then for any Kähler metric g on M % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS% baaSqaaiaaigdaaeqaaOGaaiikaiaad2eacaGGSaGaam4zaiaacMca% cqGHKjYOdaWcaaqaaiaaisdacqaHapaCcaWGObWaaWbaaSqabeaaca% aIWaaaaOGaaiikaiaadweacaGGPaaabaGaamOCaiaacIcacaWGObWa% aWbaaSqabeaacaaIWaaaaOGaaiikaiaadweacaGGPaGaeyOeI0Iaam% OCaiaacMcaaaGaeyyXIC9aaSaaaeaadaaadaqaaiaadoeadaWgaaWc% baGaaGymaaqabaGccaGGOaGaamyraiaacMcacqWIQisvcaGGBbGaeq% yYdCNaaiyxamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaGG% SaGaai4waiaad2eacaGGDbaacaGLPmIaayPkJaaabaGaaiikaiaad6% gacqGHsislcaaIXaGaaiykaiaacgcacaWG2bGaam4BaiaadYgacaGG% OaGaamytaiaacYcacaGGBbGaeqyYdCNaaiyxaiaacMcaaaaaaa!6D89!
Journal of Geometric Analysis | 2018
Claudio Arezzo; Alberto Della Vedova; Gabriele La Nave
Archive | 2017
Claudio Arezzo
\lambda _1 (M,g) \leqslant \frac{{4\pi h^0 (E)}}{{r(h^0 (E) - r)}} \cdot \frac{{\left\langle {C_1 (E) \cup [\omega ]^{n - 1} ,[M]} \right\rangle }}{{(n - 1)!vol(M,[\omega ])}}