Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Benicio Cardoso-Silva is active.

Publication


Featured researches published by Claudio Benicio Cardoso-Silva.


BMC Genomics | 2014

Building the sugarcane genome for biotechnology and identifying evolutionary trends.

Nathalia de Setta; Claudia B. Monteiro-Vitorello; Cushla J. Metcalfe; Guilherme Marcelo Queiroga Cruz; Luiz Eduardo Vieira Del Bem; Renato Vicentini; Fabio Tebaldi Silveira Nogueira; Roberta Alvares Campos; Sideny Lima Nunes; Paula Cristina Gasperazzo Turrini; Andréia Prata Vieira; Edgar Andrés Ochoa Cruz; Tatiana Caroline Silveira Corrêa; Carlos Takeshi Hotta; Alessandro M. Varani; Sonia Vautrin; Adilson Silva da Trindade; Mariane de Mendonça Vilela; Carolina G. Lembke; Paloma Mieko Sato; Rodrigo de Andrade; Milton Yutaka Nishiyama; Claudio Benicio Cardoso-Silva; Katia Castanho Scortecci; Antonio Augusto Franco Garcia; Monalisa Sampaio Carneiro; Changsoo Kim; Andrew H. Paterson; Hélène Bergès; Angélique D’Hont

BackgroundSugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome.ResultsThree hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences.ConclusionThis release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery.


PLOS ONE | 2014

De Novo Assembly and Transcriptome Analysis of Contrasting Sugarcane Varieties

Claudio Benicio Cardoso-Silva; Estela Araujo Costa; Melina Cristina Mancini; Thiago Willian Almeida Balsalobre; Lucas Eduardo Costa Canesin; Luciana Rossini Pinto; Monalisa Sampaio Carneiro; Antonio Augusto Franco Garcia; Anete Pereira de Souza; Renato Vicentini

Sugarcane is an important crop and a major source of sugar and alcohol. In this study, we performed de novo assembly and transcriptome annotation for six sugarcane genotypes involved in bi-parental crosses. The de novo assembly of the sugarcane transcriptome was performed using short reads generated using the Illumina RNA-Seq platform. We produced more than 400 million reads, which were assembled into 72,269 unigenes. Based on a similarity search, the unigenes showed significant similarity to more than 28,788 sorghum proteins, including a set of 5,272 unigenes that are not present in the public sugarcane EST databases; many of these unigenes are likely putative undescribed sugarcane genes. From this collection of unigenes, a large number of molecular markers were identified, including 5,106 simple sequence repeats (SSRs) and 708,125 single-nucleotide polymorphisms (SNPs). This new dataset will be a useful resource for future genetic and genomic studies in this species.


PLOS ONE | 2014

De Novo Assembly and Transcriptome Analysis of the Rubber Tree (Hevea brasiliensis) and SNP Markers Development for Rubber Biosynthesis Pathways

Camila Campos Mantello; Claudio Benicio Cardoso-Silva; Carla Cristina da Silva; Livia Moura Souza; Erivaldo José Scaloppi Junior; Paulo de Souza Gonçalves; Renato Vicentini; Anete Pereira de Souza

Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.


BMC Research Notes | 2011

Functional markers for gene mapping and genetic diversity studies in sugarcane.

Thiago G. Marconi; Estela Araujo Costa; Hercília Rcan Miranda; Melina Cristina Mancini; Claudio Benicio Cardoso-Silva; Karine Miranda Oliveira; Luciana Rossini Pinto; Marcelo Mollinari; A. A. F. Garcia; Anete Pereira de Souza

BackgroundThe database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database).FindingsA total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process.ConclusionsThese EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program.


BMC Genomics | 2017

GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane

Thiago Willian Almeida Balsalobre; Guilherme da Silva Pereira; Gabriel Rodrigues Alves Margarido; Rodrigo Gazaffi; Fernanda Zatti Barreto; Carina de Oliveira Anoni; Claudio Benicio Cardoso-Silva; Estela Araujo Costa; Melina Cristina Mancini; Hermann Paulo Hoffmann; Anete Pereira de Souza; Antonio Augusto Franco Garcia; Monalisa Sampaio Carneiro

BackgroundSugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes.ResultsWe used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes.ConclusionsThis study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.


PLOS ONE | 2013

De novo transcriptome assembly for the tropical grass Panicum maximum Jacq.

Guilherme Toledo-Silva; Claudio Benicio Cardoso-Silva; Liana Jank; Anete Pereira de Souza

Guinea grass (Panicum maximum Jacq.) is a tropical African grass often used to feed beef cattle, which is an important economic activity in Brazil. Brazil is the leader in global meat exportation because of its exclusively pasture-raised bovine herds. Guinea grass also has potential uses in bioenergy production due to its elevated biomass generation through the C4 photosynthesis pathway. We generated approximately 13 Gb of data from Illumina sequencing of P. maximum leaves. Four different genotypes were sequenced, and the combined reads were assembled de novo into 38,192 unigenes and annotated; approximately 63% of the unigenes had homology to other proteins in the NCBI non-redundant protein database. Functional classification through COG (Clusters of Orthologous Groups), GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses showed that the unigenes from Guinea grass leaves are involved in a wide range of biological processes and metabolic pathways, including C4 photosynthesis and lignocellulose generation, which are important for cattle grazing and bioenergy production. The most abundant transcripts were involved in carbon fixation, photosynthesis, RNA translation and heavy metal cellular homeostasis. Finally, we identified a number of potential molecular markers, including 5,035 microsatellites (SSRs) and 346,456 single nucleotide polymorphisms (SNPs). To the best of our knowledge, this is the first study to characterize the complete leaf transcriptome of P. maximum using high-throughput sequencing. The biological information provided here will aid in gene expression studies and marker-assisted selection-based breeding research in tropical grasses.


Genome Biology and Evolution | 2017

Analysis of Three Sugarcane Homo/Homeologous Regions Suggests Independent Polyploidization Events of Saccharum officinarum and Saccharum spontaneum

Mariane de Mendonça Vilela; Luiz Eduardo Vieira Del Bem; Marie-Anne Van Sluys; Nathalia de Setta; João Paulo Kitajima; Guilherme Marcelo Queiroga Cruz; Danilo Augusto Sforça; Anete Pereira de Souza; Paulo Cavalcanti Gomes Ferreira; Clícia Grativol; Claudio Benicio Cardoso-Silva; Renato Vicentini; Michel Vincentz

Whole genome duplication has played an important role in plant evolution and diversification. Sugarcane is an important crop with a complex hybrid polyploid genome, for which the process of adaptation to polyploidy is still poorly understood. In order to improve our knowledge about sugarcane genome evolution and the homo/homeologous gene expression balance, we sequenced and analyzed 27 BACs (Bacterial Artificial Chromosome) of sugarcane R570 cultivar, containing the putative single-copy genes LFY (seven haplotypes), PHYC (four haplotypes), and TOR (seven haplotypes). Comparative genomic approaches showed that these sugarcane loci presented a high degree of conservation of gene content and collinearity (synteny) with sorghum and rice orthologous regions, but were invaded by transposable elements (TE). All the homo/homeologous haplotypes of LFY, PHYC, and TOR are likely to be functional, because they are all under purifying selection (dN/dS ≪ 1). However, they were found to participate in a nonequivalently manner to the overall expression of the corresponding gene. SNPs, indels, and amino acid substitutions allowed inferring the S. officinarum or S. spontaneum origin of the TOR haplotypes, which further led to the estimation that these two sugarcane ancestral species diverged between 2.5 and 3.5 Ma. In addition, analysis of shared TE insertions in TOR haplotypes suggested that two autopolyploidization may have occurred in the lineage that gave rise to S. officinarum, after its divergence from S. spontaneum.


Ciência & Educação | 2013

Como os livros didáticos de biologia abordam as diferentes formas de estimar a biodiversidade

Claudio Benicio Cardoso-Silva; Antonio Carlos Zuliani de Oliveira

The rapid advancement of scientific research has been enabled by new knowledge being assimilated and by the reformulation of old theories and hypotheses. The importance of textbooks is unquestionable as a teaching aid in the formation of the citizen. For this reason, it is essential that they be constantly reevaluated, regarding their contents. In the present study we evaluated the different ways that biology textbooks address the biodiversity issue. To conduct this research were used text- books, which are part of the High School Didactic Textbooks Brazilian National Evaluation Program (PNLEM). From the results obtained in this study, we observed that some topics related to biodiversity studies are presented in a superficial way, and are sometimes wrong. It was also evident that the text- books examined in this study were dealing the same subject with different approaches and at different depth. This suggests that adoption of a single textbook in schools can compromise the learning pro- cess of students.


bioRxiv | 2018

Genetic variation in a complex polyploid: unveiling the dynamic allelic features of sugarcane

Danilo Augusto Sforça; Sonia Vautrin; Claudio Benicio Cardoso-Silva; Melina Cristina Mancini; Maria Victoria Romero Cruz; Guilherme da Silva Pereira; Monica Conte; Arnaud Bellec; Nair Dahmer; Joëlle Fourment; Nathalie Rodde; Marie-Anne Van Sluys; Renato Vicentini; Antonio Augusto Franco Garcia; Eliana Regina Forni-Martins; Monalisa Sampaio; Hermann Paulo Hoffmann; Luciana Rossini Pinto; Marcos Guimarães de Andrade Landell; Michel Vincentz; Hélène Bergès; Anete Pereira de Souza

Background Sugarcane (Saccharum spp.) is highly polyploid and aneuploid. Modern cultivars are derived from hybridization between S. officinarum and S. spontaneum. This combination results in a genome exhibiting variable ploidy among different loci, a huge genome size (approximately 10 Gb) and a high content of repetitive regions. Gene expression mechanisms are poorly understood in these cultivars. An approach using genomic, transcriptomic and genetic mapping can improve our knowledge of the behavior of genetics in sugarcane. Results The hypothetical HP600 and centromere protein C (CENP-C) genes from sugarcane were used to elucidate the allelic expression and genomic and genetic behavior of this complex polyploid. The genomically side-by-side genes HP600 and CENP-C were found in two different homeologous chromosome groups with ploidies of eight and ten. The first region (Region01) was a Sorghum bicolor ortholog with all haplotypes of HP600 and CENP- C expressed, but HP600 exhibited an unbalanced haplotype expression. The second region (Region02) was a scrambled sugarcane sequence formed from different noncollinear genes containing duplications of HP600 and CENP-C (paralogs). This duplication occurred before the Saccharum genus formation and after the separation of sorghum and sugarcane, resulting in a nonexpressed HP600 pseudogene and a recombined fusion version of CENP-C and orthologous gene Sobic.003G299500 with at least two chimerical gene haplotypes expressed. The genetic map construction supported the difficulty of mapping markers located in duplicated regions of complex polyploid genomes. Conclusion All these findings describe a low synteny region in sugarcane, formed by events occurring in all members of the Saccharum genus. Additionally, evidence of duplicated and truncate gene expression and the behavior of genetic markers in a duplicated region was found. Thus, we describe the complexity involved in sugarcane genetics and genomics and allelic dynamics, which can be useful for understanding the complex polyploid genome.


Frontiers in Plant Science | 2018

“Targeted Sequencing by Gene Synteny,” a New Strategy for Polyploid Species: Sequencing and Physical Structure of a Complex Sugarcane Region

Melina Cristina Mancini; Claudio Benicio Cardoso-Silva; Danilo Augusto Sforça; Anete Pereira de Souza

Sugarcane exhibits a complex genome mainly due to its aneuploid nature and high ploidy level, and sequencing of its genome poses a great challenge. Closely related species with well-assembled and annotated genomes can be used to help assemble complex genomes. Here, a stable quantitative trait locus (QTL) related to sugar accumulation in sorghum was successfully transferred to the sugarcane genome. Gene sequences related to this QTL were identified in silico from sugarcane transcriptome data, and molecular markers based on these sequences were developed to select bacterial artificial chromosome (BAC) clones from the sugarcane variety SP80-3280. Sixty-eight BAC clones containing at least two gene sequences associated with the sorghum QTL were sequenced using Pacific Biosciences (PacBio) technology. Twenty BAC sequences were found to be related to the syntenic region, of which nine were sufficient to represent this region. The strategy we propose is called “targeted sequencing by gene synteny,” which is a simpler approach to understanding the genome structure of complex genomic regions associated with traits of interest.

Collaboration


Dive into the Claudio Benicio Cardoso-Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Augusto Franco Garcia

Escola Superior de Agricultura Luiz de Queiroz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renato Vicentini

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estela Araujo Costa

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Livia Moura Souza

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Andre R.O. Conson

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monalisa Sampaio Carneiro

Federal University of São Carlos

View shared research outputs
Researchain Logo
Decentralizing Knowledge