Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Bordignon is active.

Publication


Featured researches published by Claudio Bordignon.


Immunological Reviews | 2001

Type 1 T regulatory cells

Maria Grazia Roncarolo; Rosa Bacchetta; Claudio Bordignon; Satwant K. Narula; Megan K. Levings

Summary: Suppression by T regulatory (Tr) cells is essential for induction of tolerance. Many types of Tr cells have been described in a number of systems, and their biology has been the subject of intensive investigation. Although many aspects of the mechanisms by which these cells exert their effects remain to be elucidated, it is well established that Tr cells suppress immune responses via cell‐to‐cell interactions and/or the production of interleukin (IL)‐10 and transforming growth factor (TGF)‐β. Type‐1 T regulatory (Tr1) cells are defined by their ability to produce high levels of IL‐10 and TGF‐β. Tr1 cells specific for a variety of antigens arise in vivo, but may also differentiate from naive CD4+ T cells in the presence of IL‐10 in vitro. Tr1 cells have a low proliferative capacity, which can be overcome by IL‐15. Tr1 cells suppress naive and memory T helper type 1 or 2 responses via production of IL‐10 and TGF‐β. Further characterisation of Tr1 cells at the molecular level will define their mechanisms of action and clarify their relationship with other subsets of Tr cells. The use of Tr1 cells to identify novel targets for the development of new therapeutic agents, and as a cellular therapy to modulate peripheral tolerance, can be foreseen.


The New England Journal of Medicine | 2009

Gene Therapy for immunodeficiency due to Adenosine Deaminase Deficiency

Alessandro Aiuti; Federica Cattaneo; Stefania Galimberti; Ulrike Benninghoff; Barbara Cassani; Luciano Callegaro; Samantha Scaramuzza; Grazia Andolfi; Massimiliano Mirolo; Immacolata Brigida; Antonella Tabucchi; Filippo Carlucci; Martha M. Eibl; Memet Aker; Shimon Slavin; Hamoud Al-Mousa; Abdulaziz Al Ghonaium; Alina Ferster; Andrea Duppenthaler; Luigi D. Notarangelo; Uwe Wintergerst; Rebecca H. Buckley; Marco Bregni; Sarah Marktel; Maria Grazia Valsecchi; Pier Luca Rossi; Fabio Ciceri; Miniero R; Claudio Bordignon; Maria Grazia Roncarolo

BACKGROUND We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. METHODS We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. RESULTS All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxification of purine metabolites. Nine patients had immune reconstitution with increases in T-cell counts (median count at 3 years, 1.07x10(9) per liter) and normalization of T-cell function. In the five patients in whom intravenous immune globulin replacement was discontinued, antigen-specific antibody responses were elicited after exposure to vaccines or viral antigens. Effective protection against infections and improvement in physical development made a normal lifestyle possible. Serious adverse events included prolonged neutropenia (in two patients), hypertension (in one), central-venous-catheter-related infections (in two), Epstein-Barr virus reactivation (in one), and autoimmune hepatitis (in one). CONCLUSIONS Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency. (ClinicalTrials.gov numbers, NCT00598481 and NCT00599781.)


Science | 1995

Gene Therapy in Peripheral Blood Lymphocytes and Bone Marrow for ADA− Immunodeficient Patients

Claudio Bordignon; Luigi D. Notarangelo; Nadia Nobili; Giuliana Ferrari; Giulia Casorati; Paola Panina; Evelina Mazzolari; Daniela Maggioni; Claudia Rossi; Paolo Servida; Alberto G. Ugazio; Fulvio Mavilio

Adenosine deaminase (ADA) deficiency results in severe combined immunodeficiency, the first genetic disorder treated by gene therapy. Two different retroviral vectors were used to transfer ex vivo the human ADA minigene into bone marrow cells and peripheral blood lymphocytes from two patients undergoing exogenous enzyme replacement therapy. After 2 years of treatment, long-term survival of T and B lymphocytes, marrow cells, and granulocytes expressing the transferred ADA gene was demonstrated and resulted in normalization of the immune repertoire and restoration of cellular and humoral immunity. After discontinuation of treatment, T lymphocytes, derived from transduced peripheral blood lymphocytes, were progressively replaced by marrow-derived T cells in both patients. These results indicate successful gene transfer into long-lasting progenitor cells, producing a functional multilineage progeny.


Nature | 2006

Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.

Maurilio Sampaolesi; Stéphane Blot; Giuseppe D'Antona; Nicolas Granger; Rossana Tonlorenzi; Anna Innocenzi; Paolo Mognol; Jean-Laurent Thibaud; Beatriz G. Gálvez; Inès Barthélémy; Laura Perani; Sara Mantero; Maria Guttinger; Orietta Pansarasa; Chiara Rinaldi; M. Gabriella Cusella De Angelis; Yvan Torrente; Claudio Bordignon; Roberto Bottinelli; Giulio Cossu

Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about 1 year of age as a result of failure of respiratory muscles. Here we report that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibres). The outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients.


Lancet Oncology | 2009

Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study

Fabio Ciceri; Chiara Bonini; Maria Teresa Lupo Stanghellini; Attilio Bondanza; Catia Traversari; Monica Salomoni; Lucia Turchetto; Scialini Colombi; Massimo Bernardi; Jacopo Peccatori; Alessandra Pescarollo; Paolo Servida; Zulma Magnani; Serena Kimi Perna; Veronica Valtolina; Fulvio Crippa; Luciano Callegaro; Elena Spoldi; Roberto Crocchiolo; Katharina Fleischhauer; Maurilio Ponzoni; Luca Vago; Silvano Rossini; Armando Santoro; Elisabetta Todisco; Jane F. Apperley; Eduardo Olavarria; Shimon Slavin; Eva M. Weissinger; Arnold Ganser

BACKGROUND Procedures to prevent severe graft-versus-host disease (GVHD) delay immune reconstitution secondary to transplants of haploidentical haemopoietic stem cells for the treatment of leukaemia, leading to high rates of late infectious mortality. We aimed to systematically add back genetically engineered donor lymphocytes to facilitate immune reconstitution and prevent late mortality. METHODS In a phase I-II, multicentre, non-randomised trial of haploidentical stem-cell transplantation, we infused donor lymphocytes expressing herpes-simplex thymidine kinase suicide gene (TK-cells) after transplantation. The primary study endpoint was immune reconstitution defined as circulating CD3+ count of 100 cells per muL or more for two consecutive observations. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00423124. FINDINGS From Aug 13, 2002, to March 26, 2008, 50 patients (median age 51 years, range 17-66) received haploidentical stem-cell transplants for high-risk leukaemia. Immune reconstitution was not recorded before infusion of TK-cells. 28 patients received TK-cells starting 28 days after transplantation; 22 patients obtained immune reconstitution at median 75 days (range 34-127) from transplantation and 23 days (13-42) from infusion. Ten patients developed acute GVHD (grade I-IV) and one developed chronic GVHD, which were controlled by induction of the suicide gene. Overall survival at 3 years was 49% (95% CI 25-73) for 19 patients who were in remission from primary leukaemia at the time of stem-cell transplantation. After TK-cell infusion, the last death due to infection was at 166 days, this was the only infectious death at more than 100 days. No acute or chronic adverse events were related to the gene-transfer procedure. INTERPRETATION Infusion of TK-cells might be effective in accelerating immune reconstitution, while controlling GVHD and protecting patients from late mortality in those who are candidates for haploidentical stem-cell transplantation. FUNDING MolMed SpA, Italian Association for Cancer Research.


Nature Medicine | 2012

Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer

Elena Provasi; Pietro Genovese; Angelo Lombardo; Zulma Magnani; Pei Qi Liu; Andreas Reik; Victoria Chu; David Paschon; Lei Zhang; Jürgen Kuball; Barbara Camisa; Attilio Bondanza; Giulia Casorati; Maurilio Ponzoni; Fabio Ciceri; Claudio Bordignon; Philip D. Greenberg; Michael C. Holmes; Philip D. Gregory; Luigi Naldini; Chiara Bonini

The transfer of high-avidity T cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted antigen specificities of the resultant TCRs. We designed zinc-finger nucleases (ZFNs) that promoted the disruption of endogenous TCR β- and α-chain genes. Lymphocytes treated with ZFNs lacked surface expression of CD3-TCR and expanded with the addition of interleukin-7 (IL-7) and IL-15. After lentiviral transfer of a TCR specific for the Wilms tumor 1 (WT1) antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near purity and were superior at specific antigen recognition compared to donor-matched, unedited TCR-transferred cells. In contrast to unedited TCR-transferred cells, the TCR-edited lymphocytes did not mediate off-target reactivity while maintaining their anti-tumor activity in vivo, thus showing that complete editing of T cell specificity generates tumor-specific lymphocytes with improved biosafety profiles.


Journal of Clinical Investigation | 2007

Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy

Alessandro Aiuti; Barbara Cassani; Grazia Andolfi; Massimiliano Mirolo; Luca Biasco; Fabrizia Urbinati; Cristina Valacca; Samantha Scaramuzza; Memet Aker; Shimon Slavin; Matteo Cazzola; Daniela Sartori; Alessandro Ambrosi; Clelia Di Serio; Maria Grazia Roncarolo; Fulvio Mavilio; Claudio Bordignon

Gene transfer into HSCs is an effective treatment for SCID, although potentially limited by the risk of insertional mutagenesis. We performed a genome-wide analysis of retroviral vector integrations in genetically corrected HSCs and their multilineage progeny before and up to 47 months after transplantation into 5 patients with adenosine deaminase-deficient SCID. Gene-dense regions, promoters, and transcriptionally active genes were preferred retroviral integrations sites (RISs) both in preinfusion transduced CD34(+) cells and in vivo after gene therapy. The occurrence of insertion sites proximal to protooncogenes or genes controlling cell growth and self renewal, including LMO2, was not associated with clonal selection or expansion in vivo. Clonal analysis of long-term repopulating cell progeny in vivo revealed highly polyclonal T cell populations and shared RISs among multiple lineages, demonstrating the engraftment of multipotent HSCs. These data have important implications for the biology of retroviral vectors, the dynamics of genetically modified HSCs, and the safety of gene therapy.


The New England Journal of Medicine | 2009

Loss of Mismatched HLA in Leukemia after Stem-Cell Transplantation

Luca Vago; Serena Kimi Perna; Monica Zanussi; B. Mazzi; Cristina Barlassina; Maria Teresa Lupo Stanghellini; Nicola Flavio Perrelli; Cristian Cosentino; Federica Torri; Andrea Angius; Barbara Forno; Monica Casucci; Massimo Bernardi; Jacopo Peccatori; Consuelo Corti; Attilio Bondanza; Maurizio Ferrari; Silvano Rossini; Maria Grazia Roncarolo; Claudio Bordignon; Chiara Bonini; Fabio Ciceri; Katharina Fleischhauer

BACKGROUND Transplantation of hematopoietic stem cells from partially matched family donors is a promising therapy for patients who have a hematologic cancer and are at high risk for relapse. The donor T-cell infusions associated with such transplantation can promote post-transplantation immune reconstitution and control residual disease. METHODS We identified 43 patients who underwent haploidentical transplantation and infusion of donor T cells for acute myeloid leukemia or myelodysplastic syndrome and conducted post-transplantation studies that included morphologic examination of bone marrow, assessment of hematopoietic chimerism with the use of short-tandem-repeat amplification, and HLA typing. The genomic rearrangements in mutant variants of leukemia were studied with the use of genomic HLA typing, microsatellite mapping, and single-nucleotide-polymorphism arrays. The post-transplantation immune responses against the original cells and the mutated leukemic cells were analyzed with the use of mixed lymphocyte cultures. RESULTS In 5 of 17 patients with leukemia relapse after haploidentical transplantation and infusion of donor T cells, we identified mutant variants of the original leukemic cells. In the mutant leukemic cells, the HLA haplotype that differed from the donors haplotype had been lost because of acquired uniparental disomy of chromosome 6p. T cells from the donor and the patient after transplantation did not recognize the mutant leukemic cells, whereas the original leukemic cells taken at the time of diagnosis were efficiently recognized and killed. CONCLUSIONS After transplantation of haploidentical hematopoietic stem cells and infusion of donor T cells, leukemic cells can escape from the donors antileukemic T cells through the loss of the mismatched HLA haplotype. This event leads to relapse.


Journal of Clinical Investigation | 2004

Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells

Alessandra Biffi; Michele De Palma; Angelo Quattrini; Ubaldo Del Carro; Stefano Amadio; Ilaria Visigalli; Maria Sessa; Stefania Fasano; Riccardo Brambilla; Sergio Marchesini; Claudio Bordignon; Luigi Naldini

Gene-based delivery can establish a sustained supply of therapeutic proteins within the nervous system. For diseases characterized by extensive CNS and peripheral nervous system (PNS) involvement, widespread distribution of the exogenous gene may be required, a challenge to in vivo gene transfer strategies. Here, using lentiviral vectors (LVs), we efficiently transduced hematopoietic stem cells (HSCs) ex vivo and evaluated the potential of their progeny to target therapeutic genes to the CNS and PNS of transplanted mice and correct a neurodegenerative disorder, metachromatic leukodystrophy (MLD). We proved extensive repopulation of CNS microglia and PNS endoneurial macrophages by transgene-expressing cells. Intriguingly, recruitment of these HSC-derived cells was faster and more robust in MLD mice. By transplanting HSCs transduced with the arylsulfatase A gene, we fully reconstituted enzyme activity in the hematopoietic system of MLD mice and prevented the development of motor conduction impairment, learning and coordination deficits, and neuropathological abnormalities typical of the disease. Remarkably, ex vivo gene therapy had a significantly higher therapeutic impact than WT HSC transplantation, indicating a critical role for enzyme overexpression in the HSC progeny. These results indicate that transplantation of LV-transduced autologous HSCs represents a potentially efficacious therapeutic strategy for MLD and possibly other neurodegenerative disorders.


Blood | 2013

IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors

Nicoletta Cieri; Barbara Camisa; Mattia Forcato; Giacomo Oliveira; Elena Provasi; Attilio Bondanza; Claudio Bordignon; Jacopo Peccatori; Fabio Ciceri; Maria Teresa Lupo-Stanghellini; Fulvio Mavilio; Anna Mondino; Silvio Bicciato; Chiara Bonini

Long-living memory stem T cells (T(SCM)) with the ability to self-renew and the plasticity to differentiate into potent effectors could be valuable weapons in adoptive T-cell therapy against cancer. Nonetheless, procedures to specifically target this T-cell population remain elusive. Here, we show that it is possible to differentiate in vitro, expand, and gene modify in clinically compliant conditions CD8(+) T(SCM) lymphocytes starting from naive precursors. Requirements for the generation of this T-cell subset, described as CD62L(+)CCR7(+)CD45RA(+)CD45R0(+)IL-7Rα(+)CD95(+), are CD3/CD28 engagement and culture with IL-7 and IL-15. Accordingly, T(SCM) accumulates early after hematopoietic stem cell transplantation. The gene expression signature and functional phenotype define this population as a distinct memory T-lymphocyte subset, intermediate between naive and central memory cells. When transplanted in immunodeficient mice, gene-modified naive-derived T(SCM) prove superior to other memory lymphocytes for the ability to expand and differentiate into effectors able to mediate a potent xenogeneic GVHD. Furthermore, gene-modified T(SCM) are the only T-cell subset able to expand and mediate GVHD on serial transplantation, suggesting self-renewal capacity in a clinically relevant setting. These findings provide novel insights into the origin and requirements for T(SCM) generation and pave the way for their clinical rapid exploitation in adoptive cell therapy.

Collaboration


Dive into the Claudio Bordignon's collaboration.

Top Co-Authors

Avatar

Fabio Ciceri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Chiara Bonini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Attilio Bondanza

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Jacopo Peccatori

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Catia Traversari

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Massimo Bernardi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Luca Vago

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Alessandro Aiuti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Katharina Fleischhauer

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge