Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Ceccarelli is active.

Publication


Featured researches published by Claudio Ceccarelli.


European Journal of Human Genetics | 2014

Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST.

Maria Abbondanza Pantaleo; Annalisa Astolfi; Milena Urbini; Margherita Nannini; Paola Paterini; Valentina Indio; Maristella Saponara; Serena Formica; Claudio Ceccarelli; Rita Casadio; Giulio Rossi; Federica Bertolini; Donatella Santini; Maria Giulia Pirini; Michelangelo Fiorentino; Umberto Basso; Guido Biasco

Mutations of genes encoding the subunits of the succinate dehydrogenase (SDH) complex were described in KIT/PDGFRA wild-type GIST separately in different reports. In this study, we simultaneously sequenced the genome of all subunits, SDHA, SDHB, SDHC, and SDHD in a larger series of KIT/PDGFRA wild-type GIST in order to evaluate the frequency of the mutations and explore their biological role. SDHA, SDHB, SDHC, and SDHD were sequenced on the available samples obtained from 34 KIT/PDGFRA wild-type GISTs. Of these, in 10 cases, both tumor and peripheral blood (PB) were available, in 19 cases only tumor, and in 5 cases only PB. Overall, 9 of the 34 patients with KIT/PDGFRA wild-type GIST carried mutations in one of the four subunits of the SDH complex (six patients in SDHA, two in SDHB, one in SDHC). WB and immunohistochemistry analysis showed that patients with KIT/PDGFRA wild-type GIST who harbored SDHA mutations exhibited a significant downregulation of both SDHA and SDHB protein expression, with respect to the other GIST lacking SDH mutations and to KIT/PDGFRA-mutated GIST. Clinically, four out of six patients with SDHA mutations presented with metastatic disease at diagnosis with a very slow, indolent course. Patients with KIT/PDGFRA wild-type GIST may harbor germline and/or de novo mutations of SDH complex with prevalence for mutations within SDHA, which is associated with a downregulation of SDHA and SDHB protein expression. The presence of germline mutations may suggest that these patients should be followed up for the risk of development of other cancers.


BMC Cancer | 2014

Integrated genomic study of quadruple-WT GIST ( KIT/PDGFRA/SDH/RAS pathway wild-type GIST)

Margherita Nannini; Annalisa Astolfi; Milena Urbini; Valentina Indio; Donatella Santini; Michael C. Heinrich; Christopher L. Corless; Claudio Ceccarelli; Maristella Saponara; Anna Mandrioli; Cristian Lolli; Giorgio Ercolani; Giovanni Brandi; Guido Biasco; Maria Abbondanza Pantaleo

BackgroundAbout 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813–3825, 2004; Hematol Oncol Clin North Am 23:15–34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P).In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes.MethodsWe performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis.ResultsWe found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG).ConclusionWe report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors.


International Journal of Cancer | 2014

Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on Notch signaling and gut microbiota

Giulia Piazzi; Giuseppe D'Argenio; Anna Prossomariti; Vincenzo Lembo; Giovanna Mazzone; Marco Candela; Elena Biagi; Patrizia Brigidi; Paola Vitaglione; Vincenzo Fogliano; Leonarda D'Angelo; Chiara Fazio; Alessandra Munarini; Andrea Belluzzi; Claudio Ceccarelli; Pasquale Chieco; Tiziana Balbi; Paul M. Loadman; Mark A. Hull; Marco Romano; Franco Bazzoli; Luigi Ricciardiello

Inflammatory bowel diseases are associated with increased risk of developing colitis‐associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω‐3 polyunsaturated fatty acids (ω‐3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid‐free fatty acid (EPA‐FFA) reduces polyp formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA‐FFA are unknown in CAC. We tested the effectiveness of substituting EPA‐FFA, for other dietary fats, in preventing inflammation and cancer in the AOM‐DSS model of CAC. The AOM‐DSS protocols were designed to evaluate the effect of EPA‐FFA on both initiation and promotion of carcinogenesis. We found that EPA‐FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA–FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β‐catenin expression, whilst it increased apoptosis. In both arms, EPA‐FFA treatment led to increased membrane switch from ω‐6 to ω‐3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA‐FFA treated arms and AOM‐DSS controls. Importantly, we found that EPA‐FFA treatment restored the loss of Notch signaling found in the AOM‐DSS control and resulted in the enrichment of Lactobacillus species in the gut microbiota. Taken together, our data suggest that EPA‐FFA is an excellent candidate for CRC chemoprevention in CAC.


Journal of Cellular Physiology | 2014

PPARγ and RXR Ligands Disrupt the Inflammatory Cross‐talk in the Hypoxic Breast Cancer Stem Cells Niche

Alessio Papi; Sabrina De Carolis; Sara Bertoni; Gianluca Storci; Virginia Sceberras; Donatella Santini; Claudio Ceccarelli; Mario Taffurelli; Marina Orlandi; Massimiliano Bonafè

Cancer stem cells (CSCs) are affected by the local micro‐environment, the niche, in which inflammatory stimuli and hypoxia act as steering factors. Here, two nuclear receptors (NRs) agonists, i.e. pioglitazone (PGZ), a ligand of peroxisome proliferator activated receptor‐γ, and 6‐OH‐11‐O‐hydroxyphenanthrene (IIF), a ligand of retinoid X receptors, were investigated for their capability to interference with the cross‐talk between breast CSCs and the niche compartment. We found that IIF potentiates the ability of PGZ to hamper the mammospheres‐forming capability of human breast tumours and MCF7 cancer cells, reducing the expression of CSCs regulatory genes (Notch3, Jagged1, SLUG, Interleukin‐6, Apolipoprotein E, Hypoxia inducible factor‐1α and Carbonic anhydrase IX). Notably, these effects are not observed in normal‐MS obtained from human breast tissue. Importantly, NRs agonists abolish the capability of hypoxic MCF7 derived exosomes to induce a pro‐inflammatory phenotype in mammary glands fibroblasts. Moreover, NRs agonist also directly acts on breast tumour associated fibroblasts to downregulate nuclear factor‐κB pathway and metalloproteinases (MMP2 and MMP9) expression and activity. In conclusion, NRs agonists disrupt the inflammatory cross‐talk of the hypoxic breast CSCs niche. J. Cell. Physiol. 229: 1595–1606, 2014.


PLOS ONE | 2013

Detection of Tissue Factor Antigen and Coagulation Activity in Coronary Artery Thrombi Isolated from Patients with ST-Segment Elevation Acute Myocardial Infarction

Tullio Palmerini; Luciana Tomasi; Diego Della Riva; Andrea Mariani; Nevio Taglieri; Ornella Leone; Claudio Ceccarelli; Stefano De Servi; Angelo Branzi; Philippe Généreux; Gregg W. Stone; Jasimuddin Ahamed

Introduction Although ruptured atherosclerotic plaques have been extensively analyzed, the composition of thrombi causing arterial occlusion in patients with ST-segment elevation acute myocardial infarction has been less thoroughly investigated. We sought to investigate whether coagulant active tissue factor can be retrieved in thrombi of patients with STEMI undergoing primary percutaneous coronary intervention. Methods Nineteen patients with ST-segment elevation acute myocardial infarction referred for primary percutaneous coronary intervention were enrolled in this study. Coronary thrombi aspirated from coronary arteries were routinely processed for paraffin embedding and histological evaluation (4 patients) or immediately snap frozen for evaluation of tissue factor activity using a modified aPTT test (15 patients). Immunoprecipitation followed by immunoblotting was also performed in 12 patients. Results Thrombi aspirated from coronary arteries showed large and irregular areas of tissue factor staining within platelet aggregates, and in close contact with inflammatory cells. Some platelet aggregates stained positive for tissue factor, whereas others did not. Monocytes consistently stained strongly for tissue factor, neutrophils had a more variable and irregular tissue factor staining, and red blood cells did not demonstrate staining for tissue factor. Median clotting time of plasma samples containing homogenized thrombi incubated with a monoclonal antibody that specifically inhibits tissue factor-mediated coagulation activity (mAb 5G9) were significantly longer than their respective controls (88.9 seconds versus 76.5 seconds, respectively; p<0.001). Tissue factor was also identified by immunoprecipitation in 10 patients, with significant variability among band intensities. Conclusions Active tissue factor is present in coronary artery thrombi of patients with ST-segment elevation acute myocardial infarction, suggesting that it contributes to activate the coagulation cascade ensuing in coronary thrombosis.


PLOS ONE | 2013

Peroxisome Proliferator Activated Receptor-α/Hypoxia Inducible Factor-1α Interplay Sustains Carbonic Anhydrase IX and Apoliprotein E Expression in Breast Cancer Stem Cells

Alessio Papi; Gianluca Storci; Tiziana Guarnieri; Sabrina De Carolis; Sara Bertoni; Nicola Avenia; Alessandro Sanguinetti; Angelo Sidoni; Donatella Santini; Claudio Ceccarelli; Mario Taffurelli; Marina Orlandi; Massimiliano Bonafè

Aims Cancer stem cell biology is tightly connected to the regulation of the pro-inflammatory cytokine network. The concept of cancer stem cells “inflammatory addiction” leads to envisage the potential role of anti-inflammatory molecules as new anti-cancer targets. Here we report on the relationship between nuclear receptors activity and the modulation of the pro-inflammatory phenotype in breast cancer stem cells. Methods Breast cancer stem cells were expanded as mammospheres from normal and tumor human breast tissues and from tumorigenic (MCF7) and non tumorigenic (MCF10) human breast cell lines. Mammospheres were exposed to the supernatant of breast tumor and normal mammary gland tissue fibroblasts. Results In mammospheres exposed to the breast tumor fibroblasts supernatant, autocrine tumor necrosis factor-α signalling engenders the functional interplay between peroxisome proliferator activated receptor-α and hypoxia inducible factor-1α (PPARα/HIF1α). The two proteins promote mammospheres formation and enhance each other expression via miRNA130b/miRNA17-5p-dependent mechanism which is antagonized by PPARγ. Further, the PPARα/HIF1α interplay regulates the expression of the pro-inflammatory cytokine interleukin-6, the hypoxia survival factor carbonic anhydrase IX and the plasma lipid carrier apolipoprotein E. Conclusion Our data demonstrate the importance of exploring the role of nuclear receptors (PPARα/PPARγ) in the regulation of pro-inflammatory pathways, with the aim to thwart breast cancer stem cells functioning.


PLOS ONE | 2013

Beta-catenin/HuR post-transcriptional machinery governs cancer stem cell features in response to hypoxia.

Gabriele D’Uva; Sara Bertoni; Mattia Lauriola; Sabrina De Carolis; Annalisa Pacilli; Laura D’Anello; Donatella Santini; Mario Taffurelli; Claudio Ceccarelli; Yosef Yarden; Lorenzo Montanaro; Massimiliano Bonafè; Gianluca Storci

Hypoxia has been long-time acknowledged as major cancer-promoting microenvironment. In such an energy-restrictive condition, post-transcriptional mechanisms gain importance over the energy-expensive gene transcription machinery. Here we show that the onset of hypoxia-induced cancer stem cell features requires the beta-catenin-dependent post-transcriptional up-regulation of CA9 and SNAI2 gene expression. In response to hypoxia, beta-catenin moves from the plasma membrane to the cytoplasm where it binds and stabilizes SNAI2 and CA9 mRNAs, in cooperation with the mRNA stabilizing protein HuR. We also provide evidence that the post-transcriptional activity of cytoplasmic beta-catenin operates under normoxia in basal-like/triple-negative breast cancer cells, where the beta-catenin knockdown suppresses the stem cell phenotype in vitro and tumor growth in vivo. In such cells, we unravel the generalized involvement of the beta-catenin-driven machinery in the stabilization of EGF-induced mRNAs, including the cancer stem cell regulator IL6. Our study highlights the crucial role of post-transcriptional mechanisms in the maintenance/acquisition of cancer stem cell features and suggests that the hindrance of cytoplasmic beta-catenin function may represent an unprecedented strategy for targeting breast cancer stem/basal-like cells.


Cellular Physiology and Biochemistry | 2014

Anoctamin 1 is Apically Expressed on Thyroid Follicular Cells and Contributes to ATP- and Calcium-Activated Iodide Efflux

Carmela Iosco; Cristina Cosentino; Laura Sirna; Roberta Romano; Silvia Cursano; Alessandra Mongia; Giampaolo Pompeo; Julie di Bernardo; Claudio Ceccarelli; Giovanni Tallini; Kerry J. Rhoden

Background/Aims: Iodide efflux from thyroid cells into the follicular lumen is essential for the synthesis of thyroid hormones, however, the pathways mediating this transport have only been partially identified. A calcium-activated pathway of iodide efflux has long been recognized, but its molecular identity unknown. Anoctamin 1 (ANO1) is a calcium-activated chloride channel (CaCC), and this study aims to investigate its contribution to iodide fluxes in thyroid cells. Methods: RT-PCR, immunohistochemistry, and live cell imaging with the fluorescent halide biosensor YFP-H148Q/I152L were used to study the expression, localization and function of ANO1 in thyroid cells. Results: ANO1 mRNA was detected in human thyroid tissue and FRTL-5 thyrocytes, and ANO1 protein was localized to the apical membrane of follicular cells. ATP induced a transient loss of iodide from FRTL-5 cells that was dependent on the mobilization of intracellular calcium, and was inhibited by CaCC/ANO1 inhibitors and siRNA against ANO1. Calcium-activated iodide efflux was also observed in CHO cells over-expressing the Sodium Iodide Symporter (NIS) and ANO1. Conclusion: ANO1 in thyrocytes functions as a calcium-activated channel mediating iodide efflux, and may contribute to the rapid delivery of iodide into the follicular lumen for the synthesis of thyroid hormones following activation by calcium-mobilizing stimuli.


Modern Pathology | 2014

Mitochondrial DNA genotyping efficiently reveals clonality of synchronous endometrial and ovarian cancers.

Flora Guerra; Giulia Girolimetti; Anna Myriam Perrone; Martina Procaccini; Ivana Kurelac; Claudio Ceccarelli; Dario de Biase; Giacomo Caprara; Claudio Zamagni; Pierandrea De Iaco; Donatella Santini; Giuseppe Gasparre

Simultaneous independent primary tumors of the female genital tract occur in 1–2% of gynecological cancer patients, 50–70% of which are synchronous tumors of the endometrium and ovary. Recognition of synchrony upon multiple tumors is crucial for correct prognosis, therapeutic choice, and patient management. Current guidelines for determining synchrony, based on surgical and histopathological findings, are often ambiguous and may require further molecular analyses. However, because of the uniqueness of each tumor and of its intrinsic heterogeneity, these analyses may sometimes be inconclusive. A role for mitochondrial DNA genotyping was previously demonstrated in the diagnosis of synchronous endometrial and ovarian carcinoma. We have analyzed 11 sample pairs of simultaneously revealed endometrial and ovarian cancers and have thereby applied conventional histopathological criteria, current molecular analyses (microsatellite instability, β-catenin immunohistochemical staining/CTNNB1 mutation screening), and mitochondrial DNA sequencing to distinguish separate independent tumors from metastases, comparing the performance and the informative potential of such methods. We have demonstrated that in ambiguous interpretations where histopathological criteria and canonical molecular methods fail to be conclusive, mitochondrial DNA analysis may act as a needle of balance and allow to formulate a diagnosis in 45.5% of our cases. Additional advantages of mitochondrial DNA genotyping, besides the high level of information we demonstrated here, are the easy implementation and the need for small amounts of starting material. Our results show that mitochondrial DNA genotyping may provide a substantial contribution to indisputably recognize the metastatic nature of simultaneously detected endometrial and ovarian cancers and may change the final staging and clinical management of these patients.


BMC Cancer | 2014

A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer

Laura Maria Pradella; Cecilia Evangelisti; Claudia Ligorio; Claudio Ceccarelli; Iria Neri; Roberta Zuntini; Laura Benedetta Amato; Simona Ferrari; Alberto M. Martelli; Giuseppe Gasparre; Daniela Turchetti

BackgroundAn early age at Breast Cancer (BC) onset may be a hallmark of inherited predisposition, but BRCA1/2 mutations are only found in a minority of younger BC patients. Among the others, a fraction may carry mutations in rarer BC genes, such as TP53, STK11, CDH1 and PTEN. As the identification of women harboring such mutations allows for targeted risk-management, the knowledge of associated manifestations and an accurate clinical and family history evaluation are warranted.Case presentationWe describe the case of a woman who developed an infiltrating ductal carcinoma of the right breast at the age of 32, a contralateral BC at age 36 and another BC of the right breast at 40. When she was 39xa0years-old, during a dermatological examination, mucocutaneous features suggestive of Cowden Syndrome, a disorder associated to germ-line PTEN mutations, were noticed. PTEN genetic testing revealed the novel c.71A > T (p.Asp24Val) mutation, whose deleterious effect, suggested by conservation data and in silico tools, was definitely demonstrated by the incapacity of mutant PTEN to inhibit Akt phosphorylation when used to complement PTEN-null cells. In BC tissue, despite the absence of LOH or somatic mutations of PTEN, Akt phosphorylation was markedly increased in comparison to normal tissue, thus implying additional somatic events into the deregulation of the PI3K/Akt/mTOR pathway and, presumably, into carcinogenesis. Hence, known oncogenic mutations in PIK3CA (exons 10 and 21) and AKT1 (exon 2) were screened in tumor DNA with negative results, which suggests that the responsible somatic event(s) is a different, uncommon one.ConclusionThis case stresses the importance of clinical/genetic assessment of early-onset BC patients in order to identify mutation carriers, who are at high risk of new events, so requiring tailored management. Moreover, it revealed a novel PTEN mutation with pathogenic effect, pointing out, however, the need for further efforts to elucidate the molecular steps of PTEN-associated carcinogenesis.

Collaboration


Dive into the Claudio Ceccarelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge