Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio D’Onofrio is active.

Publication


Featured researches published by Claudio D’Onofrio.


Functional Plant Biology | 2009

Induction of secondary metabolism in grape cell cultures by jasmonates

Claudio D’Onofrio; Agnieszka Cox; Christopher Davies; Paul K. Boss

The use of a genetic approach to study the biosynthetic pathways leading to the production of secondary metabolites in grapes is difficult given the long generation times and difficulty in transforming this species. In the present study, GC/MS and microarray experiments were used to identify compounds produced in grape cell cultures in response to jasmonates and to examine the expression of genes from pathways that produce these secondary metabolites. Methyl jasmonate (MeJA) and jasmonic acid (JA) treatments resulted in the production of at least 25 compounds with sesquiterpene-like mass spectra in the cell cultures. A significantly greater amount of proanthocyanidins was produced in the MeJA-treated cell cultures compared with controls and stilbene biosynthesis was induced in both MeJA- and JA-treated cells. Salicylic acid (SA) suppressed the MeJA-associated increase in sesquiterpenes and proanthocyanidins, but SA did not suppress the stilbene production induced by MeJA treatment. The mechanism by which jasmonates induced secondary metabolite production in cultured grape cells varied depending on the pathway. The increased production of proanthocyanidins and stilbenes was associated with the induction of all of the genes in associated biosynthesis pathways, including those involved in the production of phenylalanine, whereas increased sesquiterpene synthesis was linked to the induction of certain genes from relevant biosynthesis pathways.


BMC Plant Biology | 2012

Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin

Hedia Bourguiba; Jean-Marc Audergon; Lamia Krichen; Neila Trifi-Farah; Ali Mamouni; Samia Trabelsi; Claudio D’Onofrio; Bayram Murat Asma; Sylvain Santoni; Bouchaib Khadari

BackgroundDomestication generally implies a loss of diversity in crop species relative to their wild ancestors because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into Mediterranean areas such as apricot (Prunus armeniaca L.), which was probably primarily domesticated in China. By comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin.ResultsAccording to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean apricot (207 genotypes) was structured into three main gene pools: ‘Irano-Caucasian’, ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’. Among the 25 microsatellite markers used, only one displayed deviations from the frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the ‘Irano-Caucasian’ gene pool, considered as a secondary centre of diversification, to the northern and southwestern Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing gene pools from the ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’ to the secondary centre of diversification.ConclusionsA marked domestication bottleneck was detected with microsatellite markers in the Mediterranean apricot material, depicting a global image of two diffusion routes from the ‘Irano-Caucasian’ gene pool: North Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits.


Tree Genetics & Genomes | 2010

Retrotransposon-based molecular markers for grapevine species and cultivars identification.

Claudio D’Onofrio; Gabriella De Lorenzis; Tommaso Giordani; Lucia Natali; Andrea Cavallini; Giancarlo Scalabrelli

Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Red grape skin and seeds polyphenols: Evidence of their protective effects on endothelial progenitor cells and improvement of their intestinal absorption.

Francesca Felice; Ylenia Zambito; Giacomo Di Colo; Claudio D’Onofrio; C. Fausto; Alberto Balbarini; Rossella Di Stefano

SCOPE To evaluate the ability of grape skin and seeds to protect endothelial progenitor cells (EPC) from oxidative stress induced by hyperglycemia (HG) compared to red wine (RW) and prepare innovative pharmaceutical systems for the oral administration of red grape extract allowing the overcoming of its poor intestinal absorption. METHODS AND RESULTS Human EPC were characterized by expression of cell surface markers. Cells were incubated with different concentrations of total polyphenols from grape components or RW in the presence or absence of HG. Cell viability, migration, adhesion, and reactive oxygen species (ROS) production were assayed. Intestinal permeation of polyphenols was studied in the absence or presence of a quaternary ammonium-chitosan conjugate (N⁺(60)-Ch). Grape components and RW increased EPC viability, adhesion and migration, and prevented the HG effect (P < 0.01). ROS production induced by HG was significantly reduced only by grape seed extract and RW (P < 0.01). N⁺(60)-Ch acted as an effective enhancer of polyphenol permeability across the excised rat intestine. CONCLUSIONS Red grape components are a source of antioxidant compounds that ameliorate EPC viability and function, while preventing endothelial dysfunction. The use of polycationic chitosan derivatives can promote the absorption of polyphenols across intestinal epithelium, thus increasing their bioavailability and potential therapeutic value in atherosclerosis.


Phytochemistry | 2014

Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera

Fabiola Matarese; Angela Cuzzola; Giancarlo Scalabrelli; Claudio D’Onofrio

Plants produce a plethora of volatile organic compounds (VOCs) which are important in determining the quality and nutraceutical properties of horticultural food products, including the taste and aroma of wine. Given that some of the most prevalent grape aroma constituents are terpenoids, we investigated the possible variations in the relative expression of terpene synthase (TPS) genes that depend on the organ. We thus analysed mature leaves, young leaves, stems, young stems, roots, rachis, tendrils, peduncles, bud flowers, flowers and berries of cv Moscato bianco in terms of their VOC content and the expression of 23 TPS genes. In terms of the volatile characterization of the organs by SPME/GC-MS analysis, flower buds and open flowers appeared to be clearly distinct from all the other organs analysed in terms of their high VOC concentration. Qualitatively detected VOCs clearly separated all the vegetative organs from flowers and berries, then the roots and rachis from other vegetative organs and flowers from berries, which confirms the specialization in volatile production among different organs. Our real-time RT-PCR results revealed that the majority of TPS genes analysed exhibited detectable transcripts in all the organs investigated, while only some were found to be expressed specifically in one or just a few organs. In most cases, we found that the known products of the in vitro assay of VvTPS enzymes corresponded well to the terpenes found in the organs in which the encoding gene was expressed, as in the case of (E)-β-caryophyllene synthases, α-terpineol synthase and α-farnesene synthase. In addition, we found groups of homologous TPS genes, such as (E)-β-caryophyllene and β-ocimene synthases, expressed distinctively in the various tissues. This thus confirmed the subfunctionalization events and a specialization on the basis of the organs in which they are mostly expressed.


European Journal of Pharmaceutical Sciences | 2013

Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress

Francesca Felice; Ylenia Zambito; Ester Belardinelli; Claudio D’Onofrio; Angela Fabiano; Alberto Balbarini; Rossella Di Stefano

PURPOSE Bone marrow-derived endothelial progenitor cells (EPCs) circulate into peripheral blood and significantly contribute to neo-vascularisation and re-endothelialisation as part of the process of vascular repair. Several studies have reported decreased EPC number in the presence of oxidative stress. Aim of this study was to evaluate the validity of mucoadhesive polymeric nanoparticles as a delivery system of natural products able to protect EPCs from oxidative stress. METHODS The total polyphenol content and antioxidant capacity of red grape seed extract (GSE) either pre-veraison (p-GSE) or ripe (r-GSE) were measured. Cell viability was evaluated by WST-1 assay. Nanoparticles were prepared by ionotropic crosslinking of two structurally different thiolated quaternary ammonium-chitosan conjugates. A hyaluronic acid solution, containing p-GSE or r-GSE, was added to a stirred solution of each of the two chitosan derivatives to obtain p- or r-GSE loaded nanoparticles (NP) of two types. RESULTS Both GSE types demonstrated strong antioxidant capacity. p-GSE showed a higher content in total polyphenols compared to r-GSE. NP size was in the 310-340 nm range, with 24 h stability, and nearly 100% encapsulation efficiency for both GSE types. NP were internalized by cells to an extent related directly with their surface charge intensity. GSE-NP uptake significantly improved cell viability and resistance to oxidation. CONCLUSIONS Nanotechnology has a great potential in nutraceutical delivery. The present results suggest that NP is a highly promising polyphenol carrier system particularly useful to protect EPCs from oxidative stress, thus improving their survival.


Molecular Biotechnology | 2012

Effectiveness of AFLPs and Retrotransposon-Based Markers for the Identification of Portuguese Grapevine Cultivars and Clones

Isaura Castro; Claudio D’Onofrio; Juan Pedro Martín; Jesús María Ortiz; Gabriella De Lorenzis; Vanessa Ferreira; Olinda Pinto-Carnide

Grapevine germplasm, including 38 of the main Portuguese cultivars and three foreign cultivars, Pinot Noir, Pinot Blanc and Chasselas, used as a reference, and 37 true-to-type clones from the Alvarinho, Arinto, Loureiro, Moscatel Galego Branco, Trajadura and Vinhão cultivars were studied using AFLP and three retrotransposon-based molecular techniques, IRAP, REMAP and SSAP. To study the retrotransposon-based polymorphisms, 18 primers based on the LTR sequences of Tvv1, Gret1 and Vine-1 were used. In the analysis of 41 cultivars, 517 IRAP, REMAP, AFLP and SSAP fragments were obtained, 83% of which were polymorphic. For IRAP, only the Tvv1Fa primer amplified DNA fragments. In the REMAP analysis, the Tvv1Fa-Ms14 primer combination only produced polymorphic bands, and the Vine-1 primers produced mainly ISSR fragments. The highest number of polymorphic fragments was found for AFLP. Both AFLP and SSAP showed a greater capacity for identifying clones, resulting in 15 and 9 clones identified, respectively. Together, all of the techniques allowed for the identification of 54% of the studied clones, which is an important step in solving one of the challenges that viticulture currently faces.


Journal of Plant Physiology | 2015

Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses

Alberto Palliotti; Sergio Tombesi; Tommaso Frioni; Oriana Silvestroni; Vania Lanari; Claudio D’Onofrio; Fabiola Matarese; Andrea Bellincontro; Stefano Poni

Photosynthetic performances and energy dissipation mechanisms were evaluated on the anisohydric cv. Sangiovese and on the isohydric cv. Montepulciano (Vitis vinifera L.) under conditions of multiple summer stresses. Potted vines of both cultivars were maintained at 90% and 40% of maximum water availability from fruit-set to veraison. One week before veraison, at predawn and midday, main gas-exchange and chlorophyll fluorescence parameters, chlorophyll content, xanthophyll pool and cycle and catalase activity were evaluated. Under water deficit and elevated irradiance and temperature, contrary to cv. Montepulciano and despite a significant leaf water potential decrease, Sangioveses leaves kept their stomata more open and continued to assimilate CO2 while also showing higher water use efficiency. Under these environmental conditions, in comparison with the isohydric cv. Montepulciano, the protective mechanisms of energy dissipation exerted by the anisohydric cv. Sangiovese were: (i) higher stomatal conductance and thermoregulation linked to higher transpiration rate; (ii) greater ability at dissipating more efficiently the excess energy via the xanthophylls cycle activity (thermal dissipation) due to higher VAZ pool and greater increase of de-epoxidation activity.


BMC Genomics | 2016

Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars

Silvia Dal Santo; Alberto Palliotti; Sara Zenoni; Giovanni Battista Tornielli; Marianna Fasoli; Paola Paci; Sergio Tombesi; Tommaso Frioni; Oriana Silvestroni; Andrea Bellincontro; Claudio D’Onofrio; Fabiola Matarese; Matteo Gatti; Stefano Poni; Mario Pezzotti

BackgroundGrapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades.ResultsHere we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar.ConclusionsOverall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.


PLOS ONE | 2018

Phylogenetic analysis of viruses in Tuscan Vitis vinifera sylvestris (Gmeli) Hegi

Erika Sabella; Roberto Pierro; Andrea Luvisi; Alessandra Panattoni; Claudio D’Onofrio; Giancarlo Scalabrelli; Eliana Nutricati; Alessio Aprile; Luigi De Bellis; Alberto Materazzi

The health status of the native grapevine Vitis vinifera subsp. sylvestris (Gmeli) Hegi in natural areas in Europe has received little attention. A survey was carried out on wild grapevines in Tuscany (Italy), where isolates of the Grapevine rupestris stem pitting virus (GRSPaV), Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3) and Grapevine virus A (GVA) were detected. The complete coat protein (CP) region of these isolates was sequenced to investigate the relationship of the viral variants from Tuscan wild grapevines with isolates from different geographical origins. According to the phylogenetic analyses, GLRaV-1 and GLRaV-3 isolates from Tuscan wild grapevines clustered with isolates from cultivated grapevines with nucleotide sequence identities ranging from 66% to 87% and from 72.5% to 99% respectively, without any correlation between the distribution and geographical origin. Conversely, GRSPaV and GVA isolates clustered together with other Italian isolates from V. vinifera with nucleotide sequence identities ranging from 71.14% to 96.12% and from 73.5% to 92%, respectively. Our analysis of the whole amino acid sequences revealed a high conservation level for the studied proteins explained by a selective pressure on this genomic region, probably due to functional constraints imposed on CP, such as specific interactions with cellular receptors in the insect vectors necessary for successful transmission. In addition, analyses of genetic recombination suggest no significant point mutations that might play a significant role in genetic diversification. The dN/dS ratio also estimated a low number of non-silent mutations, highlighting the purifying selective pressure. The widespread distribution of the Rugose wood complex (GRSPaV and GVA associated disease) in comparison with the Grapevine Leafroll associated viruses (GLRaV-1 and -3) could explain the major geographical correlation found for the viral variants detected in Tuscany.

Collaboration


Dive into the Claudio D’Onofrio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Bignami

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caterina Morcia

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge