Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio F. Perez is active.

Publication


Featured researches published by Claudio F. Perez.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias

Nagesh Chopra; Tao Yang; Parisa Asghari; Edwin D.W. Moore; Sabine Huke; Brandy L. Akin; Robert A. Cattolica; Claudio F. Perez; Thinn Hlaing; Barbara Knollmann-Ritschel; Larry R. Jones; Isaac N. Pessah; Paul D. Allen; Clara Franzini-Armstrong; Björn C. Knollmann

Heart muscle excitation–contraction (E-C) coupling is governed by Ca2+ release units (CRUs) whereby Ca2+ influx via L-type Ca2+ channels (Cav1.2) triggers Ca2+ release from juxtaposed Ca2+ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn−/−). The structure and protein composition of the cardiac CRU is significantly altered in Trdn−/− hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn−/− hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn−/− myocytes. CRU function is impaired in Trdn−/− myocytes, with reduced SR Ca2+ release and impaired negative feedback of SR Ca2+ release on Cav1.2 Ca2+ currents (ICa). Uninhibited Ca2+ influx via ICa likely contributes to Ca2+ overload and results in spontaneous SR Ca2+ releases upon β-adrenergic receptor stimulation with isoproterenol in Trdn−/− myocytes, and ventricular arrhythmias in Trdn−/− mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias.


Journal of Biological Chemistry | 2007

Triadins Modulate Intracellular Ca2+ Homeostasis but Are Not Essential for Excitation-Contraction Coupling in Skeletal Muscle

Xiaohua Shen; Clara Franzini-Armstrong; Jose R. Lopez; Larry R. Jones; Yvonne M. Kobayashi; Ying Wang; W. Glenn L. Kerrick; Anthony H. Caswell; James D. Potter; Todd Miller; Paul D. Allen; Claudio F. Perez

To unmask the role of triadin in skeletal muscle we engineered pan-triadin-null mice by removing the first exon of the triadin gene. This resulted in a total lack of triadin expression in both skeletal and cardiac muscle. Triadin knockout was not embryonic or birth-lethal, and null mice presented no obvious functional phenotype. Western blot analysis of sarcoplasmic reticulum (SR) proteins in skeletal muscle showed that the absence of triadin expression was associated with down-regulation of Junctophilin-1, junctin, and calsequestrin but resulted in no obvious contractile dysfunction. Ca2+ imaging studies in null lumbricalis muscles and myotubes showed that the lack of triadin did not prevent skeletal excitation-contraction coupling but reduced the amplitude of their Ca2+ transients. Additionally, null myotubes and adult fibers had significantly increased myoplasmic resting free Ca2+.[3H]Ryanodine binding studies of skeletal muscle SR vesicles detected no differences in Ca2+ activation or Ca2+ and Mg2+ inhibition between wild-type and triadin-null animals. Subtle ultrastructural changes, evidenced by the appearance of longitudinally oriented triads and the presence of calsequestrin in the sacs of the longitudinal SR, were present in fast but not slow twitch-null muscles. Overall, our data support an indirect role for triadin in regulating myoplasmic Ca2+ homeostasis and organizing the molecular complex of the triad but not in regulating skeletal-type excitation-contraction coupling.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions

David C. Sheridan; Hiroaki Takekura; Clara Franzini-Armstrong; Kurt G. Beam; Paul D. Allen; Claudio F. Perez

We have defined regions of the skeletal muscle ryanodine receptor (RyR1) essential for bidirectional signaling with dihydropyridine receptors (DHPRs) and for the organization of DHPR into tetrad arrays by expressing RyR1–RyR3 chimerae in dyspedic myotubes. RyR1–RyR3 constructs bearing RyR1 residues 1–1681 restored wild-type DHPR tetrad arrays and, in part, skeletal-type excitation–contraction (EC) coupling (orthograde signaling) but failed to enhance DHPR Ca2+ currents (retrograde signaling) to WT RyR1 levels. Within this region, the D2 domain (amino acids 1272–1455), although ineffective on its own, dramatically enhanced the formation of tetrads and EC coupling rescue by constructs that otherwise are only partially effective. These findings suggest that the orthograde signal and DHPR tetrad formation require the contributions of numerous RyR regions. Surprisingly, we found that RyR3, although incapable of supporting EC coupling or tetrad formation, restored a significant level of Ca2+ current, revealing a functional interaction with the skeletal muscle DHPR. Thus, our data support the hypotheses that (i) the structural/functional link between RyR1 and the skeletal muscle DHPR requires multiple interacting regions, (ii) the D2 domain of RyR1 plays a key role in stabilizing this interaction, and (iii) a form of retrograde signaling from RyR3 to the DHPR occurs in the absence of direct protein–protein interactions.


Journal of Biological Chemistry | 2003

Amino Acids 1–1,680 of Ryanodine Receptor Type 1 Hold Critical Determinants of Skeletal Type for Excitation-Contraction Coupling ROLE OF DIVERGENCE DOMAIN D2

Claudio F. Perez; Santwana Mukherjee; Paul D. Allen

To identify domains of the ryanodine receptor (RyR1) that are functionally relevant for excitation-contraction (EC) coupling in vivo, we have studied the ability of RyR1/RyR3 chimera to rescue skeletal EC coupling in dyspedic myotubes. In this work we show that chimeric receptors containing amino acids 1–1,680 of RyR1 were able to render depolarization-induced Ca2+ release to RyR3. Within this region, residues 1,272–1,455, containing divergent domain D2 of RyR1, proved to be a critical element because the absence of this region selectively abolished depolarization-evoked Ca2+ transients without affecting chemically induced activation. Although the D2 domain by itself failed to restore skeletal EC coupling to RyR3, the addition of the D2 region resulted in a dramatic enhancement of EC coupling restored by an RyR3 chimera containing amino acids 1,681–3,770 of RyR1. These results suggest that although the D2 domain of RyR1 plays a key role during EC coupling, additional region(s) from the N-terminal end of RyR1 as well as previously identified regions of the central portion of the receptor are needed in order to allow normal EC coupling.


Biophysical Journal | 2003

RyR1/RyR3 Chimeras Reveal that Multiple Domains of RyR1 Are Involved in Skeletal-Type E-C Coupling

Claudio F. Perez; Andrew A. Voss; Isaac N. Pessah; Paul D. Allen

Skeletal-type E-C coupling is thought to require a direct interaction between RyR1 and the alpha(1S)-DHPR. Most available evidence suggests that the cytoplasmic II-III loop of the dihydropyridine receptor (DHPR) is the primary source of the orthograde signal. However, identification of the region(s) of RyR1 involved in bidirectional signaling with the alpha(1S)-DHPR remains elusive. To identify these regions we have designed a series of chimeric RyR cDNAs in which different segments of RyR1 were inserted into the corresponding region of RyR3 and expressed in dyspedic 1B5 myotubes. RyR3 provides a preferable background than RyR2 for defining domains essential for E-C coupling because it possesses less sequence homology to RyR1 than the RyR2 backbone used in previous studies. Our data show that two regions of RyR1 (chimera Ch-10 aa 1681-2641 and Ch-9 aa 2642-3770), were independently able to restore skeletal-type E-C coupling to RyR3. These two regions were further mapped and the critical RyR1 residues were 1924-2446 (Ch-21) and 2644-3223 (Ch-19). These results both support and refine the previous hypothesis that multiple domains of RyR1 combine to functionally interact with the DHPR during E-C coupling.


PLOS ONE | 2012

Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis

Simona Boncompagni; Monique Thomas; Jose R. Lopez; Paul D. Allen; Qunying Yuan; Evangelia G. Kranias; Clara Franzini-Armstrong; Claudio F. Perez

Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association.


BMJ Open | 2011

The European lactase persistence genotype determines the lactase persistence state and correlates with gastrointestinal symptoms in the Hispanic and Amerindian Chilean population: a case–control and population-based study

Eugenia Morales; Lorena Azocar; Ximena Maul; Claudio F. Perez; José Chianale; Juan Francisco Miquel

Background The lactase persistent (LP) or lactase non-persistent (LNP) state in European adults is genetically determined by a single nucleotide polymorphism (SNP) located 13.9 kb upstream of the lactase (LCT) gene, known as LCT C>T−13910 (rs4988235). The LNP condition leads to an inability to digest the milk sugar lactose leading to gastrointestinal symptoms and can affect nutrient and calcium intake in certain populations. Objectives The authors studied a group of 51 Chilean patients to assess whether this SNP influences the LP/LNP state in this population, and determined the prevalence of LCT C>T−13910 genotypes in a representative sample of 216 Hispanics and 43 Amerindians with correlation to digestive symptoms. Design Case–control study done in Chilean patients with clinical suspicion of LNP that were assessed using clinical survey, hydrogen breath test (HBT) and SNP genotyping. The population sample of Hispanics and Amerindians was assessed by clinical survey and SNP genotyping. Results Of the 51 patients with clinical suspicion of LNP, 29 were HBT-positive. The CC genotype (LNP) was present in 89.7% of the patients with positive HBT and in only 4.7% of those with negative HBT. The prevalence of the CC genotype was 56.9% in the Hispanic population and 88.3% in Amerindians, and was associated with a higher self-reported clinical intolerance to ingestion of dairy products. Conclusion The LP/LNP state is determined by the LCT C>T−13910 variant in Chileans. This variant predicts digestive symptoms associated with the ingestion of lactose and is a good tool for the diagnosis of primary adult hypolactasia. The LCT T−13910 allele is rare in the Amerindian population and is suggestive of European ancestry in this contemporary population.


Journal of Virology | 2006

Efficient Site-Specific Integration of Large Transgenes by an Enhanced Herpes Simplex Virus/Adeno-Associated Virus Hybrid Amplicon Vector

Qiang Liu; Claudio F. Perez; Yaming Wang

ABSTRACT We previously demonstrated that a herpes simplex virus type 1 (HSV-1)/adeno-associated virus (AAV) hybrid amplicon vector constructed by inserting the sequences of regulatory protein (rep) and inverted terminal repeats of AAV into an HSV amplicon vector resulted in the enhanced stability of transgene expression compared to the original HSV-1 amplicon vector. However, problems related to the expression of Rep compromised its therapeutic applications. We report here a new HSV/AAV hybrid amplicon vector system that not only solved problems associated with Rep expression but also markedly improved the stable transduction efficiency of this vector. This new HSV/AAV vector is designed in a way that little or no Rep would be expressed in packaging cells, but it can be expressed in transduced cells if Cre recombinase is provided. Furthermore, Rep expression will be automatically suppressed as a consequence of Rep-mediated integration. Our results showed that the new hybrid amplicon vector yielded titers comparable to those of standard amplicon vectors. When Cre-expressing 293 cells were transduced, a low level of Rep expression was detected, and stable transduction was achieved in ∼22% of transduced cells; of those cells, ∼70% transduction was achieved by Rep-mediated site-specific integration. In the majority of the stably transduced cells, Rep expression was no longer observed. Our results also proved that this vector system is capable of efficiently accommodating and site-specifically integrating large transgenes, such as the full-length dystrophin expression cassette. Thus, the new HSV/AAV vector demonstrated unique advantages in safe and effective delivery of long-lasting transgene expression into human cells.


Journal of Biological Chemistry | 2010

Ablation of Skeletal Muscle Triadin Impairs FKBP12/RyR1 Channel Interactions Essential for Maintaining Resting Cytoplasmic Ca2+

Jose M. Eltit; Wei Feng; Jose R. Lopez; Isela T. Padilla; Isaac N. Pessah; Tadeusz F. Molinski; Bradley R. Fruen; Paul D. Allen; Claudio F. Perez

Previously, we have shown that lack of expression of triadins in skeletal muscle cells results in significant increase of myoplasmic resting free Ca2+ ([Ca2+]rest), suggesting a role for triadins in modulating global intracellular Ca2+ homeostasis. To understand this mechanism, we study here how triadin alters [Ca2+]rest, Ca2+ release, and Ca2+ entry pathways using a combination of Ca2+ microelectrodes, channels reconstituted in bilayer lipid membranes (BLM), Ca2+, and Mn2+ imaging analyses of myotubes and RyR1 channels obtained from triadin-null mice. Unlike WT cells, triadin-null myotubes had chronically elevated [Ca2+]rest that was sensitive to inhibition with ryanodine, suggesting that triadin-null cells have increased basal RyR1 activity. Consistently, BLM studies indicate that, unlike WT-RyR1, triadin-null channels more frequently display atypical gating behavior with multiple and stable subconductance states. Accordingly, pulldown analysis and fluorescent FKBP12 binding studies in triadin-null muscles revealed a significant impairment of the FKBP12/RyR1 interaction. Mn2+ quench rates under resting conditions indicate that triadin-null cells also have higher Ca2+ entry rates and lower sarcoplasmic reticulum Ca2+ load than WT cells. Overexpression of FKBP12.6 reverted the null phenotype, reducing resting Ca2+ entry, recovering sarcoplasmic reticulum Ca2+ content levels, and restoring near normal [Ca2+]rest. Exogenous FKBP12.6 also reduced the RyR1 channel Po but did not rescue subconductance behavior. In contrast, FKBP12 neither reduced Po nor recovered multiple subconductance gating. These data suggest that elevated [Ca2+]rest in triadin-null myotubes is primarily driven by dysregulated RyR1 channel activity that results in part from impaired FKBP12/RyR1 functional interactions and a secondary increased Ca2+ entry at rest.


Cell Calcium | 2011

Reduced gain of excitation-contraction coupling in triadin-null myotubes is mediated by the disruption of FKBP12/RyR1 interaction.

Jose M. Eltit; John Szpyt; Hongli Li; Paul D. Allen; Claudio F. Perez

Several studies have suggested that triadin (Tdn) may be a critical component of skeletal EC-coupling. However, using Tdn-null mice we have shown that triadin ablation results in no significant disruption of skeletal EC-coupling. To analyze the role of triadin in EC-coupling signaling here we used whole-cell voltage clamp and simultaneous recording of intracellular Ca²+ release to characterize the retrograde and orthograde signaling between RyR1 and DHPR in cultured myotubes. DHPR Ca²+ currents elicited by depolarization of Wt and Tdn-null myotubes displayed similar current densities and voltage dependence. However, kinetic analysis of the Ca²+ current shows that activation time constant of the slow component was slightly decreased in Tdn-null cells. Voltage-evoked Ca²+ transient of Tdn-null myotubes showed small but significant reduction in peak fluorescence amplitude but no differences in voltage dependence. This difference in Ca²+ amplitude was averted by over-expression of FKBP12.6. Our results show that bi-directional signaling between DHPR and RyR1 is preserved nearly intact in Tdn-null myotubes and that the effect of triadin ablation on Ca²+ transients appears to be secondary to the reduced FKBP12 binding capacity of RyR1 in Tdn-null myotubes. These data suggest that skeletal triadins do not play a direct role in skeletal EC-coupling.

Collaboration


Dive into the Claudio F. Perez's collaboration.

Top Co-Authors

Avatar

Paul D. Allen

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jose R. Lopez

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Fessenden

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

John Szpyt

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monique Thomas

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Wei Feng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge