Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Gallicchio is active.

Publication


Featured researches published by Claudio Gallicchio.


Neural Networks | 2011

Architectural and Markovian factors of echo state networks

Claudio Gallicchio

Echo State Networks (ESNs) constitute an emerging approach for efficiently modeling Recurrent Neural Networks (RNNs). In this paper we investigate some of the main aspects that can be accounted for the success and limitations of this class of models. In particular, we propose complementary classes of factors related to contractivity and architecture of reservoirs and we study their relative relevance. First, we show the existence of a class of tasks for which ESN performance is independent of the architectural design. The effect of the Markovian factor, characterizing a significant class within these cases, is shown by introducing instances of easy/hard tasks for ESNs featured by contractivity of reservoir dynamics. In the complementary cases, for which architectural design is effective, we investigate and decompose the aspects of network design that allow a larger reservoir to progressively improve the predictive performance. In particular, we introduce four key architectural factors: input variability, multiple time-scales dynamics, non-linear interactions among units and regression in an augmented feature space. To investigate the quantitative effects of the different architectural factors within this class of tasks successfully approached by ESNs, variants of the basic ESN model are proposed and tested on instances of datasets of different nature and difficulty. Experimental evidences confirm the role of the Markovian factor and show that all the identified key architectural factors have a major role in determining ESN performances.


Neural Computing and Applications | 2014

An experimental characterization of reservoir computing in ambient assisted living applications

Davide Bacciu; Paolo Barsocchi; Stefano Chessa; Claudio Gallicchio

In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks.


Communications in computer and information science | 2013

Multisensor Data Fusion for Activity Recognition Based on Reservoir Computing

Filippo Palumbo; Paolo Barsocchi; Claudio Gallicchio; Stefano Chessa

Ambient Assisted Living facilities provide assistance and care for the elderly, where it is useful to infer their daily activity for ensuring their safety and successful ageing. In this work, we present an Activity Recognition system that classifies a set of common daily activities exploiting both the data sampled by accelerometer sensors carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. To this end, we model the accelerometer and the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing paradigm. Our results show that, with an appropriate configuration of the ESN, the system reaches a good accuracy with a low deployment cost.


Neurocomputing | 2013

Tree Echo State Networks

Claudio Gallicchio

In this paper we present the Tree Echo State Network (TreeESN) model, generalizing the paradigm of Reservoir Computing to tree structured data. TreeESNs exploit an untrained generalized recursive reservoir, exhibiting extreme efficiency for learning in structured domains. In addition, we highlight through the paper other characteristics of the approach: First, we discuss the Markovian characterization of reservoir dynamics, extended to the case of tree domains, that is implied by the contractive setting of the TreeESN state transition function. Second, we study two types of state mapping functions to map the tree structured state of TreeESN into a fixed-size feature representation for classification or regression tasks. The critical role of the relation between the choice of the state mapping function and the Markovian characterization of the task is analyzed and experimentally investigated on both artificial and real-world tasks. Finally, experimental results on benchmark and real-world tasks show that the TreeESN approach, in spite of its efficiency, can achieve comparable results with state-of-the-art, although more complex, neural and kernel based models for tree structured data.


Journal of Ambient Intelligence and Smart Environments | 2016

Human Activity Recognition using Multisensor Data Fusion based on Reservoir Computing

Filippo Palumbo; Claudio Gallicchio; Rita Pucci

Activity recognition plays a key role in providing activity assistance and care for users in smart homes. In this work, we present an activity recognition system that classifies in the near real-time a set of common daily activities exploiting both the data sampled by sensors embedded in a smartphone carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. In order to achieve an effective and responsive classification, a decision tree based on multisensor data-stream is applied fusing data coming from embedded sensors on the smartphone and environmental sensors before processing the RSS stream. To this end, we model the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks (RNNs) implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing (RC) paradigm. We targeted the system for the EvAAL scenario, an international competition that aims at establishing benchmarks and evaluation metrics for comparing Ambient Assisted Living (AAL) solutions. In this paper, the performance of the proposed activity recognition system is assessed on a purposely collected real-world dataset, taking also into account a competitive neural network approach for performance comparison. Our results show that, with an appropriate configuration of the information fusion chain, the proposed system reaches a very good accuracy with a low deployment cost.


Journal of Intelligent and Robotic Systems | 2015

Robotic Ubiquitous Cognitive Ecology for Smart Homes

Giuseppe Amato; Davide Bacciu; Mathias Broxvall; Stefano Chessa; Sonya A. Coleman; Maurizio Di Rocco; Mauro Dragone; Claudio Gallicchio; Claudio Gennaro; Hector Lozano; Tm McGinnity; Anjan Kumar Ray; Arantxa Renteria; Alessandro Saffiotti; David Swords; Claudio Vairo; Philip Vance

Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent-based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a proof of concept smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feedback received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work.


mobile lightweight wireless systems | 2011

User Movements Forecasting by Reservoir Computing Using Signal Streams Produced by Mote-Class Sensors

Claudio Gallicchio; Paolo Barsocchi; Stefano Chessa

Real-time, indoor user localization, although limited to the current user position, is of great practical importance in many Ambient Assisted Living (AAL) applications. Moreover, an accurate prediction of the user next position (even with a short advice) may open a number of new AAL applications that could timely provide the right services in the right place even before the user request them. However, the problem of forecasting the user position is complicated due to the intrinsic difficulty of localization in indoor environments, and to the fact that different paths of the user may intersect at a given point, but they may end in different places. We tackle with this problem by modeling the localization information stream obtained from a Wireless Sensor Network (WSN) using Recurrent Neural Networks implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing paradigm. In particular, we have set up an experimental test-bed in which the WSN produces localization information of a user that moves along a number of different paths, and in which the ESN collects localization information to predict a future position of the user at some given mark points. Our results show that, with an appropriate configuration of the ESN, the system reaches a good accuracy of the prediction also with a small WSN, and that the accuracy scales well with the WSN size. Furthermore, the accuracy is also reasonably robust to variations in the deployment of the sensors. For these reasons our solution can be configured to meet the desired trade-off between cost and accuracy.


international conference on information intelligence systems and applications | 2014

Learning context-aware mobile robot navigation in home environments

Davide Bacciu; Claudio Gallicchio; Maurizio Di Rocco; Alessandro Saffiotti

We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.


23rd Workshop of the Italian Neural Networks Society, WIRN 2013 | 2014

Robot Localization by Echo State Networks Using RSS

Stefano Chessa; Claudio Gallicchio; Roberto Guzman

In this paper we present an application of Reservoir Computing to indoor robot localization, based on input received signal strength signals from a wireless sensor network. The proposed localization system allows to combine good predictive performance with particularly efficient and practical solutions. Promising results are shown in preliminary experiments on a real-world scenario.


Cognitive Computation | 2017

Echo State Property of Deep Reservoir Computing Networks

Claudio Gallicchio

In the last years, the Reservoir Computing (RC) framework has emerged as a state of-the-art approach for efficient learning in temporal domains. Recently, within the RC context, deep Echo State Network (ESN) models have been proposed. Being composed of a stack of multiple non-linear reservoir layers, deep ESNs potentially allow to exploit the advantages of a hierarchical temporal feature representation at different levels of abstraction, at the same time preserving the training efficiency typical of the RC methodology. In this paper, we generalize to the case of deep architectures the fundamental RC conditions related to the Echo State Property (ESP), based on the study of stability and contractivity of the resulting dynamical system. Besides providing a necessary condition and a sufficient condition for the ESP of layered RC networks, the results of our analysis provide also insights on the nature of the state dynamics in hierarchically organized recurrent models. In particular, we find out that by adding layers to a deep reservoir architecture, the regime of network’s dynamics can only be driven towards (equally or) less stable behaviors. Moreover, our investigation shows the intrinsic ability of temporal dynamics differentiation at the different levels in a deep recurrent architecture, with higher layers in the stack characterized by less contractive dynamics. Such theoretical insights are further supported by experimental results that show the effect of layering in terms of a progressively increased short-term memory capacity of the recurrent models.

Collaboration


Dive into the Claudio Gallicchio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Dragone

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Claudio Vairo

Istituto di Scienza e Tecnologie dell'Informazione

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Barsocchi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Claudio Gennaro

Istituto di Scienza e Tecnologie dell'Informazione

View shared research outputs
Top Co-Authors

Avatar

Federico Vozzi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Filippo Palumbo

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge