Cláudio M. Gomes
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cláudio M. Gomes.
Nature Structural & Molecular Biology | 2000
Carlos Frazão; Gabriela Silva; Cláudio M. Gomes; Pedro M. Matias; Ricardo Coelho; Larry C. Sieker; Sofia Macedo; Ming Y. Liu; Solange Oliveira; Miguel Teixeira; António V. Xavier; Claudina Rodrigues-Pousada; Maria Arménia Carrondo; Jean Le Gall
Desulfovibrio gigas is a strict anaerobe that contains a well-characterized metabolic pathway that enables it to survive transient contacts with oxygen. The terminal enzyme in this pathway, rubredoxin:oxygen oxidoreductase (ROO) reduces oxygen to water in a direct and safe way. The 2.5 Å resolution crystal structure of ROO shows that each monomer of this homodimeric enzyme consists of a novel combination of two domains, a flavodoxin-like domain and a Zn-β-lactamase-like domain that contains a di-iron center for dioxygen reduction. This is the first structure of a member of a superfamily of enzymes widespread in strict and facultative anaerobes, indicating its broad physiological significance.
Journal of Biological Chemistry | 1997
Cláudio M. Gomes; Gabriela Silva; Solange Oliveira; Jean LeGall; Ming-Yih Liu; António V. Xavier; Claudina Rodrigues-Pousada; Miguel Teixeira
Rubredoxin-oxygen oxidoreductase (ROO) is the final component of a soluble electron transfer chain that couples NADH oxidation to oxygen consumption in the anaerobic sulfate reducerDesulfovibrio gigas. It is an 86-kDa homodimeric flavohemeprotein containing two FAD molecules, one mesoheme IX, and one Fe-uroporphyrin I per monomer, capable of fully reducing oxygen to water. EPR studies on the native enzyme reveal two components with g values at ∼2.46, 2.29, and 1.89, which are assigned to low spin hemes and are similar to the EPR features of P-450 hemes, suggesting that ROO hemes have a cysteinyl axial ligation. At pH 7.6, the flavin redox transitions occur at 0 ± 15 mV for the quinone/semiquinone couple and at −130 ± 15 mV for the semiquinone/hydroquinone couple; the hemes reduction potential is −350 ± 15 mV. Spectroscopic studies provided unequivocal evidence that the flavins are the electron acceptor centers from rubredoxin, and that their reduction proceed through an anionic semiquinone radical. The reaction with oxygen occurs in the flavin moiety. These data are strongly corroborated by the finding that rubredoxin and ROO are located in the same polycistronic unit of D. gigas genome. For the first time, a clear role for a rubredoxin in a sulfate-reducing bacterium is presented.
Molecular Microbiology | 2004
Fabian Müller; Tiago M. Bandeiras; Tim Urich; Miguel Teixeira; Cláudio M. Gomes; Arnulf Kletzin
Thiosulphate is one of the products of the initial step of the elemental sulphur oxidation pathway in the thermoacidophilic archaeon Acidianus ambivalens. A novel thiosulphate:quinone oxidoreductase (TQO) activity was found in the membrane extracts of aerobically grown cells of this organism. The enzyme was purified 21‐fold from the solubilized membrane fraction. The TQO oxidized thiosulphate with tetrathionate as product and ferricyanide or decyl ubiquinone (DQ) as electron acceptors. The maximum specific activity with ferricyanide was 73.4 U (mg protein)−1 at 92°C and pH 6, with DQ it was 397 mU (mg protein)−1 at 80°C. The Km values were 2.6 mM for thiosulphate (kcat = 167 s−1), 3.4 mM for ferricyanide and 5.87 µM for DQ. The enzymic activity was inhibited by sulphite (Ki = 5 µM), metabisulphite, dithionite and TritonX‐100, but not by sulphate or tetrathionate. A mixture of caldariella quinone, sulfolobus quinone and menaquinone was non‐covalently bound to the protein. No other cofactors were detected. Oxygen consumption was measured in membrane fractions upon thiosulphate addition, thus linking thiosulphate oxidation to dioxygen reduction, in what constitutes a novel activity among Archaea. The holoenzyme was composed of two subunits of apparent molecular masses of 28 and 16 kDa. The larger subunit appeared to be glycosylated and was identical to DoxA, and the smaller was identical to DoxD. Both subunits had been described previously as a part of the terminal quinol:oxygen oxidoreductase complex (cytochrome aa3).
FEBS Letters | 2001
Rita S. Lemos; Cláudio M. Gomes; Margarida Santana; Jean LeGall; António V. Xavier; Miguel Teixeira
Sulfate‐reducing bacteria are considered as strict anaerobic microorganisms, in spite of the fact that some strains have been shown to tolerate the transient presence of dioxygen. This report shows that membranes from Desulfovibrio gigas grown in fumarate/sulfate contain a respiratory chain fully competent to reduce dioxygen to water. In particular, a membrane‐bound terminal oxygen reductase, of the cytochrome bd family, was isolated, characterized, and shown to completely reduce oxygen to water. This oxidase has two subunits with apparent molecular masses of 40 and 29 kDa. Using NADH or succinate as electron donors, the oxygen respiratory rates of D. gigas membranes are comparable to those of aerobic organisms (3.2 and 29 nmol O2 min−1 mg protein−1, respectively). This ‘strict anaerobic’ bacterium contains all the necessary enzymatic complexes to live aerobically, showing that the relationships between oxygen and anaerobes are much more complex than originally thought.
FEBS Journal | 2010
Günter Fritz; Hugo M. Botelho; Ludmilla A. Morozova-Roche; Cláudio M. Gomes
The S100 proteins are 10–12 kDa EF‐hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF‐hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll‐like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self‐assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal‐mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid‐forming capacity is also addressed, as well as the hypothesis that amyloid self‐assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.
Biochimica et Biophysica Acta | 2002
Rita S. Lemos; Andreia S. Fernandes; Manuela M. Pereira; Cláudio M. Gomes; Miguel Teixeira
A comprehensive phylogenetic analysis of the core subunits of succinate:quinone oxidoreductases and quinol:fumarate oxidoreductases is performed, showing that the classification of the enzymes as type A to E based on the type of the membrane anchor fully correlates with the specific characteristics of the two core subunits. A special emphasis is given to the type E enzymes, which have an atypical association to the membrane, possibly involving anchor subunits with amphipathic helices. Furthermore, the redox properties of the SQR/QFR proteins are also reviewed, stressing out the recent observation of redox-Bohr effect upon haem reduction, observed for the Desulfovibrio gigas and Rhodothermus marinus enzymes, which indicates a direct protonation event at the haems or at a nearby residue. Finally, the possible contribution of these enzymes to the formation/dissipation of a transmembrane proton gradient is discussed, considering recent experimental and structural data.
Mini-reviews in Medicinal Chemistry | 2008
Paula Leandro; Cláudio M. Gomes
Protein folding in the cell is a tightly regulated process, involving a series of proteins, from molecular chaperones to proteases that assist the folding process and monitor the quality of the final product. Despite this control, genetic or sporadic factors may compromise protein folding and the folded state resulting in the formation of non-native misfolded, destabilised, aggregated or fibrillar species. These are hallmarks of the so-called protein conformational disorders, in which the altered protein conformations result in cell toxicity, functional deficiency or lead to dominant negative effects. Examples of such pathologies include neurodegenerative and metabolic disorders. In recent years, it has become clear that several different small chemical compounds such as osmolytes, protein inhibitors, ligands and cofactors exert a chemical chaperoning effect and are able to rescue folding and trafficking defects, minimising or partly overcoming the pathological consequences of protein misfolding. Here we review the different types of chemical chaperones and provide a structural and energetic rationale for their action. Examples of chemical chaperoning are overviewed and discussed on the basis of the reported effects exerted by chemical compounds at different stages of the protein folding process and protein conformational states.
Chemistry & Biology | 2013
Carlos M. Farinha; John King-Underwood; Marisa Sousa; Ana Raquel Correia; Bárbara J. Henriques; Mónica Roxo-Rosa; Ana Carina Da Paula; Simon Christopher Hirst; Cláudio M. Gomes; Margarida D. Amaral
Cystic fibrosis is mostly caused by the F508del mutation, which impairs CFTR protein from exiting the endoplasmic reticulum due to misfolding. VX-809 is a small molecule that rescues F508del-CFTR localization, which recently went into clinical trial but with unknown mechanism of action (MoA). Herein, we assessed if VX-809 is additive or synergistic with genetic revertants of F508del-CFTR, other correctors, and low temperature to determine its MoA. We explored and integrated those various agents in combined treatments, showing how they add to each other to identify their complementary MoA upon correction of F508del-CFTR. Our experimental and modeling data, while compatible with putative binding of VX-809 to NBD1:ICL4 interface, also indicate scope for further synergistic F508del-CFTR correction by other compounds at distinct conformational sites/cellular checkpoints, thus suggesting requirement of combined therapies to fully rescue F508del-CFTR.
Biochemical and Biophysical Research Communications | 2002
João B. Vicente; Cláudio M. Gomes; Alain Wasserfallen; Miguel Teixeira
The A-type flavoproteins (ATF) are modular proteins involved in multi-component electron transfer pathways, having oxygen reductase activity. They are complex flavoproteins containing two distinct structural domains, one having an FMN in a flavodoxin-like fold and the other a binuclear iron centre within a metallo-beta-lactamase-like fold. Here, we report the purification and characterisation of a recombinant ATF from the cyanobacterium Synechoystis sp. PCC 6803, which has the unique feature of comprising an additional third domain with similarities towards flavin:NAD(P)H reductases. The latter was expressed independently as a truncated protein form and found to be capable of receiving electrons from NADH as well as to indiscriminately bind either one FAD or one FMN with equivalent affinities. Further kinetic studies have shown that the intact ATF is an NADH:oxygen oxidoreductase, with the catalytic ability to fully reduce oxygen to water. Thus, this constitutes an example on how structural modules found within partner proteins from an electron transfer pathway can be combined in a single polypeptide chain achieving identical catalytic activities.
Journal of Lipid Research | 2007
Márcia Almeida Liz; Cláudio M. Gomes; Maria João Saraiva; Mónica Mendes Sousa
A fraction of plasma transthyretin (TTR) circulates in HDL through binding to apolipoprotein A-I (apoA-I). Moreover, TTR is able to cleave the C terminus of lipid-free apoA-I. In this study, we addressed the relevance of apoA-I cleavage by TTR in lipoprotein metabolism and in the formation of apoA-I amyloid fibrils. We determined that TTR may also cleave lipidated apoA-I, with cleavage being more effective in the lipid-poor preβ-HDL subpopulation. Upon TTR cleavage, discoidal HDL particles displayed a reduced capacity to promote cholesterol efflux from cholesterol-loaded THP-1 macrophages. In similar assays, TTR-containing HDL from mice expressing human TTR in a TTR knockout background had a decreased ability to perform reverse cholesterol transport compared with similar particles from TTR knockout mice, reinforcing the notion that cleavage by TTR reduces the ability of apoA-I to promote cholesterol efflux. As amyloid deposits composed of N-terminal apoA-I fragments are common in the atherosclerotic intima, we assessed the impact of TTR cleavage on apoA-I aggregation and fibrillar growth. We determined that TTR-cleaved apoA-I has a high propensity to form aggregated particles and that it formed fibrils faster than full-length apoA-I, as assessed by electron microscopy. Our results show that apoA-I cleavage by TTR may affect HDL biology and the development of atherosclerosis by reducing cholesterol efflux and increasing the apoA-I amyloidogenic potential.