Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Pernechele is active.

Publication


Featured researches published by Claudio Pernechele.


New Journal of Physics | 2008

Experimental verification of the feasibility of a quantum channel between space and Earth

Paolo Villoresi; Thomas Jennewein; Fabrizio Tamburini; Markus Aspelmeyer; Cristian Bonato; Rupert Ursin; Claudio Pernechele; V. Luceri; G. Bianco; Anton Zeilinger; Cesare Barbieri

Extending quantum communication to space environments would enable us to perform fundamental experiments on quantum physics as well as applications of quantum information at planetary and interplanetary scales. Here, we report on the first experimental study of the conditions for the implementation of the single-photon exchange between a satellite and an Earth-based station. We built an experiment that mimics a single photon source on a satellite, exploiting the telescope at the Matera Laser Ranging Observatory of the Italian Space Agency to detect the transmitted photons. Weak laser pulses, emitted by the ground-based station, are directed toward a satellite equipped with cube-corner retroreflectors. These reflect a small portion of the pulse, with an average of less- than-one photon per pulse directed to our receiver, as required for faint-pulse


Solar Physics | 1997

First Results from the SOHO Ultraviolet Coronagraph Spectrometer

John L. Kohl; G. Noci; E. Antonucci; G. Tondello; M. C. E. Huber; L. D. Gardner; P. Nicolosi; Leonard Strachan; Silvano Fineschi; John C. Raymond; Marco Romoli; D. Spadaro; Alexander V. Panasyuk; O. H. W. Siegmund; C. Benna; A. Ciaravella; Steven R. Cranmer; S. Giordano; Margarita Karovska; Richard P. Martin; J. Michels; A. Modigliani; Giampiero Naletto; Claudio Pernechele; G. Poletto; P. L. Smith

The SOHO Ultraviolet Coronagraph Spectrometer (UYCS/SOHO) is being used to observe the extended solar corona from 1.25 to 10 R from Sun center. Initial observations of polar coronal holes and equatorial streamers are described. The observations include measurements of spectral line profiles for H I Lα and Lβ, O VI 1032 A and 1037 A, Mg × 625 A, Fe XII 1242 A and several others. Intensities for Mg × 610 A, Si XII 499 A, and 520 A, S × 1196 A, and 22 others have been observed. Preliminary results for derived H0, O5+, Mg9+, and Fe11+ velocity distributions and initial indications of outflow velocities for O5+ are described. In streamers, the H0 velocity distribution along the line of sight (specified by the value at e-1, along the line of sight) decreases from a maximum value of about 180 km s-1 at 2 R to about 140 km s-1 at 8 R. The value for O5+ increases with height reaching a value of 150 km s-1 at 4.7 R. In polar coronal holes, the O5+ velocity at e-1 is atout equal to that of H0 at 1.7 R and significantly larger at 2.1 R. The O5+ in both streamers and coronal holes were found to have amsotropic velocity distributions with the smaller values in the radial direction.


SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation | 1996

Stray light, radiometric, and spectral characterization of UVCS/SOHO: laboratory calibration and flight performance

Larry D. Gardner; John L. Kohl; Peter S. Daigneau; E. F. Dennis; Silvano Fineschi; J. Michels; George U. Nystrom; Alexander V. Panasyuk; John C. Raymond; D. J. Reisenfeld; Peter L. Smith; Leonard Strachan; R. M. Suleiman; G. Noci; Marco Romoli; A. Ciaravella; A. Modigliani; Martin H.C. Huber; Ester Antonucci; Carlo Benna; Silvio Giordano; G. Tondello; P. Nicolosi; Giampiero Naletto; Claudio Pernechele; D. Spadaro; Oswald H. W. Siegmund; A. Allegra; Paolo A. Carosso; Murzy D. Jhabvala

The Ultraviolet Coronagraph Spectrometer is one of the instruments on board the Solar and Heliospheric Observatory spacecraft, which was launched in December, 1995. The instrument is designed to make ultraviolet spectrometric measurements and visible polarimetric measurements of the extended solar corona. Prior to launch laboratory measurements were carried out to determine system level values for many of the key performance parameters. Further measurements on instrument performance have been carried out since launch. Presented are descriptions of measurement techniques and representative results.


Optics Express | 2006

Influence of satellite motion on polarization qubits in a Space-Earth quantum communication link

Cristian Bonato; Markus Aspelmeyer; Thomas Jennewein; Claudio Pernechele; Paolo Villoresi; Anton Zeilinger

In a Space quantum-cryptography experiment a satellite pointing system is needed to send single photons emitted by the source on the satellite to the polarization analysis apparatus on Earth. In this paper a simulation is presented regarding how the satellite pointing systems affect the polarization state of the single photons, to help designing a proper compensation system.


Astronomy and Astrophysics | 2009

Iqueye, a single photon-counting photometer applied to the ESO new technology telescope

Giampiero Naletto; Cesare Barbieri; Tommaso Occhipinti; Ivan Capraro; A. Di Paola; C. Facchinetti; Enrico Verroi; P. Zoccarato; G. Anzolin; S. Billotta; Pietro Bolli; G. Bonanno; Da Deppo; S. Fornasier; C. Germanà; E. Giro; S. Marchi; Filippo Messina; Claudio Pernechele; Fabrizio Tamburini; Mirco Zaccariotto; L. Zampieri

Context. A new extremely high speed photon-counting photometer, Iqueye, has been installed and tested at the New Technology Telescope, in La Silla. Aims. This instrument is the second prototype of a “quantum” photometer being developed for future Extremely Large Telescopes of 30–50 m aperture. Methods. Iqueye divides the telescope aperture into four portions, each feeding a single photon avalanche diode. The counts from the four channels are collected by a time-to-digital converter board, where each photon is appropriately time-tagged. Owing to a rubidium oscillator and a GPS receiver, an absolute rms timing accuracy better than 0.5 ns during one-hour observations is achieved. The system can sustain a count rate of up to 8 MHz uninterruptedly for an entire night of observation. Results. During five nights of observations, the system performed smoothly, and the observations of optical pulsar calibration targets provided excellent results.


Astronomy and Astrophysics | 2006

Polarimetric survey of asteroids with the Asiago telescope

S. Fornasier; Irina N. Belskaya; Yu. G. Shkuratov; Claudio Pernechele; Cesare Barbieri; E. Giro; H. Navasardyan

Aims. We present the first results of an asteroid photo-polarimetry program started at Asiago-Cima Ekar Observatory. The aim of our survey is to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic and dynamical classes. Methods. The data were obtained with the polarization analyser placed inside the Faint Object Spectrographic Camera (AFOSC) of the 1.8 m telescope. This instrument allows simultaneous measurements of the two first Stokes parameters without any λ/2 retarding plate. Results. Our survey began in 2002, and up to now we have obtained data on a sample of 36 asteroids; most of them are being investigated with the polarimetric technique for the first time. Combining our data with those already available in literature, we present an estimate of the inversion angle for 7 asteroids in this paper. Furthermore, we present the polarimetric measurements of the rare asteroid classes belonging to the A and D types and a detailed VRI observations at extremely small phase angles of the low albedo asteroid 1021 Flammario


arXiv: Quantum Physics | 2004

Space-to-ground quantum communication using an optical ground station: a feasibility study

Paolo Villoresi; Fabrizio Tamburini; Markus Aspelmeyer; Thomas Jennewein; Rupert Ursin; Claudio Pernechele; G. Bianco; Anton Zeilinger; Cesare Barbieri

We have tested the experimental prerequisites for a Space-to-Ground quantum communication link between satellites and an optical ground station. The feasibility of our ideas is being tested using the facilities of the ASI Matera Laser Ranging Observatory (MLRO) and existing geodetic satellites such as Lageos 1 and 2. Specific emphasis is put on the necessary technological modifications of the existing infrastructure to achieve single photon reception from an orbiting satellite.


Proceedings of SPIE | 2004

Sardinia Radio Telescope: the new Italian project

Gavril Grueff; Giovanni Alvito; Roberto Ambrosini; Pietro Bolli; Andrea Maccaferri; Giuseppe Maccaferri; Marco Morsiani; Leonardo Mureddu; V. Natale; Luca Olmi; Alessandro Orfei; Claudio Pernechele; Angelo Poma; I. Porceddu; Lucio Rossi; Gianpaolo Zacchiroli

This contribution gives a description of the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna proposed by the Institute of Radio Astronomy (IRA) of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia) and it will join the two existing antennas of Medicina (Bologna) and Noto (Siracusa) both operated by the IRA. With its large antenna size (64m diameter) and its active surface, SRT, capable of operations up to about 100GHz, will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and the standing wave between secondary mirror and feed. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.


Proceedings of SPIE | 2008

Status of the Sardinia Radio Telescope project

Gianni Tofani; Gianni Alvito; Roberto Ambrosini; Pietro Bolli; Claudio Bortolotti; Loredana Bruca; Franco Buffa; Alessandro Cattani; Gianni Comoretto; Andrea Cremonini; Luca Cresci; Nichi DAmico; Gian Luigi Deiana; Antonietta Fara; L. Feretti; Franco Fiocchi; Enrico Flamini; Flavio Fusi Pecci; Gavril Grueff; Giuseppe Maccaferri; Andrea Maccaferri; F. Mantovani; Sergio Mariotti; Carlo Migoni; Filippo Messina; Jader Monari; Marco Morsiani; M. Murgia; José Musmeci; Mauro Nanni

We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radiotelescope capable to operate with high efficiency in the 0.3-116 GHz frequency range. The instrument is the result of a scientific and technical collaboration among three Structures of the Italian National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomy Observatory (in Sardinia,) and the Arcetri Astrophysical Observatory in Florence. Funding agencies are the Italian Ministry of Education and Scientific Research, the Sardinia Regional Government, and the Italian Space Agency (ASI,) that has recently rejoined the project. The telescope site is about 35 km North of Cagliari. The radio telescope has a shaped Gregorian optical configuration with a 7.9 m diameter secondary mirror and supplementary Beam-WaveGuide (BWG) mirrors. With four possible focal positions (primary, Gregorian, and two BWGs), SRT will be able to allocate up to 20 remotely controllable receivers. One of the most advanced technical features of the SRT is the active surface: the primary mirror will be composed by 1008 panels supported by electromechanical actuators digitally controlled to compensate for gravitational deformations. With the completion of the foundation on spring 2006 the SRT project entered its final construction phase. This paper reports on the latest advances on the SRT project.


Journal of Modern Optics | 2009

AquEYE, a single photon counting photometer for astronomy

Cesare Barbieri; Giampiero Naletto; Tommaso Occhipinti; C. Facchinetti; Enrico Verroi; E. Giro; A. Di Paola; S. Billotta; P. Zoccarato; Pietro Bolli; Fabrizio Tamburini; G. Bonanno; Mauro D'Onofrio; S. Marchi; G. Anzolin; Ivan Capraro; Filippo Messina; Claudio Pernechele; Mirco Zaccariotto; L. Zampieri; V. Da Deppo; S. Fornasier; Fernando Pedichini

This paper describes the results obtained so far with AquEYE, a single photon counting, fixed aperture photometer for the Asiago 182 cm telescope. AquEYE has been conceived as a prototype of a truly ‘quantum’ photometer for future Extremely Large Telescopes of 30–50 m aperture. This prototype is characterized by four independent channels equipped with single photon avalanche diodes (SPADs) as detectors. The counts from the four channels are acquired by a TDC board which has a nominal 25 ps time tagging capability. Taking into account the 35 ps jitter in the SPAD itself, the overall precision of the time tags is of the order of 50 ps. The internal oscillator is locked to an external rubidium clock; a GPS pulse per second is collected by the TDC itself to obtain a UTC reference. The maximum photon count rate which the present system can sustain is 12 MHz.

Collaboration


Dive into the Claudio Pernechele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge