Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Pietra.
Journal of Pharmacology and Experimental Therapeutics | 2010
Camilo Rojas; Ying Li; Jie Zhang; Marigo Stathis; Jesse Alt; Ajit G. Thomas; Sergio Cantoreggi; Silvia Sebastiani; Claudio Pietra; Barbara S. Slusher
Palonosetron is the only 5-HT3 receptor antagonist approved for the treatment of delayed chemotherapy-induced nausea and vomiting (CINV) in moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), the endogenous ligand acting preferentially on neurokinin-1 (NK-1) receptors, not serotonin (5-HT), is the dominant mediator of delayed emesis. However, palonosetron does not bind to the NK-1 receptor. Recent data have revealed cross-talk between the NK-1 and 5HT3 receptor signaling pathways; we postulated that if palonosetron differentially inhibited NK-1/5-HT3 cross-talk, it could help explain its efficacy profile in delayed emesis. Consequently, we evaluated the effect of palonosetron, granisetron, and ondansetron on SP-induced responses in vitro and in vivo. NG108-15 cells were preincubated with palonosetron, granisetron, or ondansetron; antagonists were removed and the effect on serotonin enhancement of SP-induced calcium release was measured. In the absence of antagonist, serotonin enhanced SP-induced calcium-ion release. After preincubation with palonosetron, but not ondansetron or granisetron, the serotonin enhancement of the SP response was inhibited. Rats were treated with cisplatin and either palonosetron, granisetron, or ondansetron. At various times after dosing, single neuronal recordings from nodose ganglia were collected after stimulation with SP; nodose ganglia neuronal responses to SP were enhanced when the animals were pretreated with cisplatin. Palonosetron, but not ondansetron or granisetron, dose-dependently inhibited the cisplatin-induced SP enhancement. The results are consistent with previous data showing that palonosetron exhibits distinct pharmacology versus the older 5-HT3 receptor antagonists and provide a rationale for the efficacy observed with palonosetron in delayed CINV in the clinic.
European Journal of Pharmacology | 2012
Marigo Stathis; Claudio Pietra; Camilo Rojas; Barbara S. Slusher
Netupitant is a potent and selective NK(1) receptor antagonist under development in combination with a fixed dose of palonosetron for the prevention of chemotherapy induced nausea and vomiting. Palonosetron is a 5-HT(3) receptor antagonist approved for both the prevention of acute and delayed chemotherapy induced nausea and vomiting after moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), a ligand acting largely on tachykinin (NK(1)) receptors, is the dominant mediator of delayed emesis. Interestingly, palonosetron does not bind to the NK(1) receptor so that the mechanism behind palonosetrons unique efficacy against delayed emesis is not clear. Palonosetron exhibits a distinct ability among 5-HT(3) receptor antagonists to inhibit crosstalk between NK(1) and 5-HT(3) receptor signaling pathways. The objective of the current work was to determine if palonosetrons ability to inhibit receptor signaling crosstalk would influence netupitants inhibition of the SP-mediated response when the two drugs are dosed together. We first studied the inhibition of SP-induced Ca(2+) mobilization in NG108-15 cells by palonosetron, ondansetron and granisetron. Unexpectedly, in the absence of serotonin, palonosetron inhibited the SP-mediated dose response 15-fold; ondansetron and granisetron had no effect. Netupitant also dose-dependently inhibited the SP response as expected from an NK1 receptor antagonist. Importantly, when both palonosetron and netupitant were present, they exhibited an enhanced inhibition of the SP response compared to either of the two antagonists alone. The results further confirm palonosetrons unique pharmacology among 5-HT(3) receptor antagonists and suggest that it can enhance the prevention of delayed emesis provided by NK(1) receptor antagonists.
Peptides | 2012
Anna Rizzi; Barbara Campi; Valeria Camarda; Stefano Molinari; Sergio Cantoreggi; Domenico Regoli; Claudio Pietra; Girolamo Calo
The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients.
Peptides | 2012
Anna Rizzi; Barbara Campi; Valeria Camarda; Stefano Molinari; Sergio Cantoreggi; Domenico Regoli; Claudio Pietra; Girolamo Calo
The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients.
European Journal of Pharmacology | 2001
Angelo Reggiani; Claudio Pietra; Roberto Arban; Pasquina Marzola; Uliano Guerrini; Luigi Ziviani; Andrea Boicelli; Andrea Sbarbati; Francesco Osculati
The neuroprotective activity of GV150526 (3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloroindole-2-carboxylic acid sodium salt), a selective glycine receptor antagonist of the NMDA receptor, has been evaluated by magnetic resonance imaging (MRI) in a rat model of middle cerebral artery occlusion. The aim of the work was to evaluate, using an in vivo method, whether GV150526 was able to reduce the extent of ischemic brain damage when administered both before and after (6 h) middle cerebral artery occlusion. GV150526 was administered at a dose of 3 mg/kg i.v. T2-weighted (T2W) and diffusion weighted (DW) images were acquired at 6, 24 and 144 h after the establishment of the cerebral ischemia. Substantial neuroprotection was demonstrated at all investigated time points when GV150526 was administered before the ischemic insult. The ischemic volume was reduced by 84% and 72%, compared to control values, when measured from T2W and DW images, acquired 24 h after middle cerebral artery occlusion. Administration of the same dose of GV150526, 6 h post-ischemia, also resulted in a significant (p < 0.05) neuroprotection. The ischemic volume was reduced by 48% from control values when measured from T2W images and by 45% when measured from DW images. No significant difference was found between volumes of brain ischemia obtained by either MRI or triphenyltetrazolium chloride staining. These data confirm the potential neuroprotective activity of the glycine receptor antagonist GV150526 when administered either before or up to 6 h after ischemia.
Peptides | 2012
Anna Rizzi; Barbara Campi; Camarda; Stefano Molinari; Sergio Cantoreggi; Domenico Regoli; Claudio Pietra; Girolamo Calo
The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients.
European Journal of Pharmacology | 2018
Alessia Chiorazzi; Krystyna M. Wozniak; Rana Rais; Ying Wu; Alex G. Gadiano; Mohamed H. Farah; Ying Liu; Annalisa Canta; Paola Alberti; Virginia Rodriguez-Menendez; Cristina Meregalli; G Fumagalli; L Monza; E Pozzi; James J. Vornov; Michael Polydefkis; Claudio Pietra; Barbara S. Slusher; Guido Cavaletti
ABSTRACT Chemotherapy‐Induced Peripheral Neurotoxicity (CIPN) is often dose‐limiting and impacts life quality and survival of cancer patients. Ghrelin agonists have neuroprotectant effects and may have a role in treating or preventing CIPN. We evaluated the CNS‐penetrant ghrelin agonist HM01 in three experimental models of CIPN at doses of 3–30 mg/kg p.o. daily monitoring orexigenic properties, nerve conduction, mechanical allodynia, and intra‐epidermal nerve fiber density (IENFD). In a cisplatin‐based study, rats were dosed daily for 3 days (0.5 mg/kg i.p.) + HM01. Cisplatin treatment induced mechanical hypersensitivity which was significantly reduced by HM01. In a second study, oxaliplatin was administered to mice (6 mg/kg i.p. 3 times/week for 4 weeks) resulting in significant digital nerve conduction velocity (NCV) deficits and reduction of IENFD. Concurrent HM01 dose dependently prevented the decline in NCV and attenuated the reduction in IENFD. Pharmacokinetic studies showed HM01 accumulation in the dorsal root ganglia and sciatic nerves which reached concentrations > 10 fold that of plasma. In a third model, HM01 was tested in preventive and therapeutic paradigms in a bortezomib‐based rat model (0.2 mg/kg i.v., 3 times/week for 8 weeks). In the preventive setting, HM01 blocked bortezomib‐induced hyperalgesia and IENFD reduction at all doses tested. In the therapeutic setting, significant effect was observed, but only at the highest dose. Altogether, the robust peripheral nervous system penetration of HM01 and its ability to improve multiple oxaliplatin‐, cisplatin‐, and bortezomib‐induced neurotoxicities suggest that HM01 may be a useful neuroprotective adjuvant for CIPN.
Neurourology and Urodynamics | 2010
Stefano Palea; Veronique Guilloteau; Marc Guerard; Maria-Alba Guardia Llorens; Sergio Cantoreggi; Emanuela Lovati; Claudio Pietra; Philippe Lluel
Archive | 2012
Claudio Pietra; Sergio Cantoreggi
Archive | 2012
Claudio Pietra; Sergio Cantoreggi