Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio R. F. Marinho is active.

Publication


Featured researches published by Claudio R. F. Marinho.


PLOS Pathogens | 2010

VEGF promotes malaria-associated acute lung injury in mice.

Sabrina Epiphanio; Marta G. Campos; Ana Pamplona; Daniel Carapau; Ana C. Pena; Ricardo Ataíde; Carla A. A. Monteiro; Nuno Félix; Artur Costa-Silva; Claudio R. F. Marinho; Sergio Dias; Maria M. Mota

The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies.


Infection and Immunity | 2005

CD8+-T-Cell-Dependent Control of Trypanosoma cruzi Infection in a Highly Susceptible Mouse Strain after Immunization with Recombinant Proteins Based on Amastigote Surface Protein 2

Adriano F. Araújo; Bruna Cunha de Alencar; José Ronnie Vasconcelos; Meire I. Hiyane; Claudio R. F. Marinho; Marcus L. O. Penido; Silvia Beatriz Boscardin; Daniel F. Hoft; Ricardo T. Gazzinelli; Mauricio M. Rodrigues

ABSTRACT We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8+ T cells, but not CD4+ T cells, and was associated with the presence of CD8+ T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8+-T-cell-dependent protective immunity against T. cruzi infection.


Infection and Immunity | 2006

Contribution of NK, NK T, γδ T, and αβ T Cells to the Gamma Interferon Response Required for Liver Protection against Trypanosoma cruzi

Luiz Roberto Sardinha; Rosa M. Elias; Tainá Mosca; Karina R. B. Bastos; Claudio R. F. Marinho; Maria Regina D’Império Lima; José M. Alvarez

ABSTRACT In the present work, we show that intracellular Trypanosoma cruzi is rarely found in the livers of acutely infected mice, but inflammation is commonly observed. The presence of numerous intrahepatic amastigotes in infected gamma interferon (IFN-γ)-deficient mice corroborates the notion that the liver is protected by an efficient local immunity. The contribution of different cell populations was suggested by data showing that CD4- and CD8-deficient mice were able to restrain liver parasite growth. Therefore, we have characterized the liver-infiltrating lymphocytes and determined the sources of IFN-γ during acute T. cruzi infection. We observed that natural killer (NK) cells increased by day 7, while T and B cells increased by day 14. Among CD3+ cells, CD4+, CD8+, and CD4− CD8− cell populations were greatly expanded. A large fraction of CD3+ cells were positive for PanNK, a β1 integrin expressed by NK and NK T cells. However, these lymphocytes were not classic NK T cells because they did not express NK1.1 and showed no preferential usage of Vβ8. Otherwise, liver NK T (CD3+ NK1.1+) cells were not increased in acutely infected mice. The majority of PanNK+ CD4+ and PanNK+ CD8+ cells expressed T-cell receptor αβ (TCRαβ), whereas PanNK+ CD4− CD8− cells were positive for TCRγδ. In fact, γδ T cells showed the most remarkable increase (40- to 100-fold) among liver lymphocytes. Most importantly, intracellular analysis revealed high levels of IFN-γ production at day 7 by NK cells and at day 14 by CD4+, CD8+, and CD4− CD8− TCRγδ+ cells. We concluded that NK cells are a precocious source of IFN-γ in the livers of acutely infected mice, and, as the disease progresses, conventional CD4+ and CD8+ T cells and γδ T cells, but not classic NK-T cells, may provide the IFN-γ required for liver protection against T. cruzi.


Infection and Immunity | 2004

Pathology Affects Different Organs in Two Mouse Strains Chronically Infected by a Trypanosoma cruzi Clone: a Model for Genetic Studies of Chagas' Disease

Claudio R. F. Marinho; Daniella Zanetti Bucci; Maria Lúcia Z. Dagli; Karina R. B. Bastos; Marcos G. Grisotto; Luiz Roberto Sardinha; Cristiane R. G. M. Baptista; Carlos Penha Gonçalves; Maria Regina D’Império Lima; José M. Alvarez

ABSTRACT Chagas’ disease is a chronic infection caused by Trypanosoma cruzi and represents an important public health burden in Latin America. Frequently the disease evolves undetectable for decades, while in a significant fraction of the affected individuals it culminates in death by heart failure. Here, we describe a novel murine model of the chronic infection with T. cruzi using a stable clone isolated from a human patient (Sylvio X10/4). The infection in the C3H/HePAS mouse strain progresses chronically and is mainly characterized by intense cardiac inflammatory lesions that recapitulate the chronic cardiac pathology observed in the human disease. Moderate striated muscle lesions are also present in C3H/HePAS mice. Viable parasites are detected and recovered from the chronic heart lesions of C3H/HePAS mice, supporting the current notion that development of heart pathology in Chagas’ disease is related to parasite persistence in the inflamed tissue. By contrast, in infected A/J mice, chronic inflammatory lesions are targeted to the liver and the skeletal muscle, while pathology and parasites are undetectable in the heart. The phenotypic analysis of F1 (A/J × C3H/HePAS) and F2 (A/J × C3H/HePAS) mice suggests that the genetic predisposition to develop the inflammatory lesions caused by T. cruzi (Sylvio X10/4 clone) is heterogeneous because the heart and liver pathology segregate in the F2 generation. These findings raise the hypothesis that the pathology heterogeneity observed in humans with Chagas’ disease (absence and presence of cardiac or digestive chronic lesions) may be attributable to host genetic factors.


International Journal for Parasitology | 2012

On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field.

Fabio T. M. Costa; Stefanie C. P. Lopes; Letusa Albrecht; Ricardo Ataíde; André Siqueira; Rodrigo M. Souza; Bruce Russell; Laurent Rénia; Claudio R. F. Marinho; Marcus V. G. Lacerda

Life-threatening Plasmodium vivax malaria cases, while uncommon, have been reported since the early 20th century. Unfortunately, the pathogenesis of these severe vivax malaria cases is still poorly understood. In Brazil, the proportion of vivax malaria cases has been steadily increasing, as have the number of cases presenting serious clinical complications. The most frequent syndromes associated with severe vivax malaria in Brazil are severe anaemia and acute respiratory distress. Additionally, P. vivax infection may also result in complications associated with pregnancy. Here, we review the latest findings on severe vivax malaria in Brazil. We also discuss how the development of targeted field research infrastructure in Brazil is providing clinical and ex vivo experimental data that benefits local and international efforts to understand the pathogenesis of P. vivax.


Scandinavian Journal of Immunology | 2007

IFN-γ, But Not Nitric Oxide or Specific IgG, is Essential for the In vivo Control of Low-virulence Sylvio X10/4 Trypanosoma cruzi Parasites

Claudio R. F. Marinho; L. N. Nuñez‐Apaza; R. Martins‐Santos; Karina R. B. Bastos; André Luis Bombeiro; Daniella Zanetti Bucci; Luiz Roberto Sardinha; Maria Regina D’Império Lima; José M. Alvarez

Highly virulent strains of Trypanosoma cruzi are frequently used as murine models of Chagas’ disease. However, these strains do not fully represent the spectrum of parasites involved in the human infection. In this paper, we analysed parasitaemia, mortality, tissue pathology and parasite‐specific IgG serum levels in immune‐deficient mice infected with Sylvio X10/4 parasites, a T. cruzi derived from a chagasic patient that yields very low parasitaemias and in C3H/HePAS mice induces a chronic cardiopathy resembling the human disease. IFN‐γ was identified as a crucial element for parasite control as its absence determined a drastic increase in parasitaemia, tissue parasitism, leukocyte infiltrates at the heart and striated muscles and mortality. The lack of IFN‐γ or IL‐12p40, a molecule shared by IL‐12 and IL‐23, also resulted in spinal cord lesions and a progressive paralysis syndrome. Whereas IgG2a was the main Ig isotype in infected C57BL/6 mice, IL‐12p40‐KO mice produced IgG2a and IgG1 and IFN‐γ‐KO mice produced only IgG1. The IFN‐γ‐protective effect was not essentially mediated by nitric oxide (NO), inasmuch as infected iNOS‐KO mice showed no parasitaemia and low tissue damage. Mice deficient in CD4+ or CD8+ T cells showed an intermediate phenotype with increased mortality and tissue pathology but no parasitaemia. Interestingly, CD28‐KO mice were unable to produce anti‐T. cruzi IgG antibodies but presented moderate tissue pathology and managed to control the infection. Thus, differently from infections with high virulence parasites, neither IgG, NO nor CD28‐mediated signalling are essential for the non‐sterile control of Sylvio X10/4 parasites.


PLOS Neglected Tropical Diseases | 2013

Placental histopathological changes associated with Plasmodium vivax infection during pregnancy.

Rodrigo M. Souza; Ricardo Ataíde; Jamille G. Dombrowski; Vanessa Ippólito; Elizabeth H. Aitken; Suiane da Costa Negreiros do Valle; José M. Alvarez; Sabrina Epiphânio; Claudio R. F. Marinho

Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41), P. vivax exposure (n = 59) or P. falciparum exposure (n = 19). We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045), placental barrier thickness (OR, 25.59, P = 0.021) and mononuclear cells (OR, 4.02, P = 0.046) were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A vivax-score was developed using these three parameters (and not evidence of Plasmodium) that differentiates between placentas from P. vivax-exposed and unexposed women. This score illustrates the importance of adequate management of P. vivax malaria during pregnancy.


PLOS Neglected Tropical Diseases | 2010

The liver plays a major role in clearance and destruction of blood trypomastigotes in Trypanosoma cruzi chronically infected mice.

Luiz Roberto Sardinha; Tainá Mosca; Rosa M. Elias; Rogério Silva do Nascimento; Lígia Antunes Gonçalves; Daniella Zanetti Bucci; Claudio R. F. Marinho; Carlos Penha-Gonçalves; Maria Regina D’Império Lima; José M. Alvarez

Intravenous challenge with Trypanosoma cruzi can be used to investigate the process and consequences of blood parasite clearance in experimental Chagas disease. One hour after intravenous challenge of chronically infected mice with 5×106 trypomastigotes, the liver constituted a major site of parasite accumulation, as revealed by PCR. Intact parasites and/or parasite remnants were visualized at this time point scattered in the liver parenchyma. Moreover, at this time, many of liver-cleared parasites were viable, as estimated by the frequency of positive cultures, which considerably diminished after 48 h. Following clearance, the number of infiltrating cells in the hepatic tissue notably increased: initially (at 24 h) as diffuse infiltrates affecting the whole parenchyma, and at 48 h, in the form of large focal infiltrates in both the parenchyma and perivascular spaces. Phenotypic characterization of liver-infiltrating cells 24 h after challenge revealed an increase in Mac1+, CD8+ and CD4+ cells, followed by natural killer (NK) cells. As evidence that liver-infiltrating CD4+ and CD8+ cells were activated, increased frequencies of CD69+CD8+, CD69+CD4+ and CD25+CD122+CD4+ cells were observed at 24 and 48 h after challenge, and of CD25−CD122+CD4+ cells at 48 h. The major role of CD4+ cells in liver protection was suggested by data showing a very high frequency of interferon (IFN)-γ-producing CD4+ cells 24 h after challenge. In contrast, liver CD8+ cells produced little IFN-γ, even though they showed an enhanced potential for secreting this cytokine, as revealed by in vitro T cell receptor (TCR) stimulation. Confirming the effectiveness of the liver immune response in blood parasite control during the chronic phase of infection, no live parasites were detected in this organ 7 days after challenge.


Trends in Parasitology | 2010

Of mice and women: rodent models of placental malaria

Lars Hviid; Claudio R. F. Marinho; Trine Staalsoe; Carlos Penha-Gonçalves

Pregnant women are at increased malaria risk. The infections are characterized by placental accumulation of infected erythrocytes (IEs) with adverse consequences for mother and baby. Placental IE sequestration in the intervillous space is mediated by variant surface antigens (VSAs) selectively expressed in placental malaria (PM) and specific for chondroitin sulfate A (CSA). In Plasmodium falciparum, these VSA(PM) appear largely synonymous with the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family variant VAR2CSA. As rodent malaria parasites do not possess PfEMP1 homologs, the usefulness of experimental mouse PM models remains controversial. However, many features of murine and human PM are similar, including involvement of VSAs analogous to PfEMP1. It thus appears that rodent model studies can further the understanding of VSA-dependent malaria pathogenesis and immunity.


PLOS Pathogens | 2015

In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

Henrique Borges da Silva; Raíssa Fonseca; Alexandra dos Anjos Cassado; Érika Machado de Salles; Maria Nogueira de Menezes; Jean Langhorne; Katia R. Perez; Iolanda M. Cuccovia; Bernhard Ryffel; Vasco M. Barreto; Claudio R. F. Marinho; Silvia Beatriz Boscardin; José M. Alvarez; Maria Regina D’Império-Lima; Carlos E. Tadokoro

Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

Collaboration


Dive into the Claudio R. F. Marinho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renato Barboza

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Penha-Gonçalves

Instituto Gulbenkian de Ciência

View shared research outputs
Researchain Logo
Decentralizing Knowledge