Claudio Rocha
Naval Medical Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Rocha.
PLOS Neglected Tropical Diseases | 2010
Brett M. Forshey; Carolina Guevara; V. Alberto Laguna-Torres; Manuel Cespedes; Jorge Vargas; Alberto Gianella; Efrain Vallejo; César Madrid; Nicolas Aguayo; Eduardo Gotuzzo; Victor Suárez; Ana Maria Morales; Luis Beingolea; Nora Reyes; Juan Antonio Galbis Pérez; Monica Negrete; Claudio Rocha; Amy C. Morrison; Kevin L. Russell; Patrick J. Blair; James G. Olson; Tadeusz J. Kochel
Background Arthropod-borne viruses (arboviruses) are among the most common agents of human febrile illness worldwide and the most important emerging pathogens, causing multiple notable epidemics of human disease over recent decades. Despite the public health relevance, little is know about the geographic distribution, relative impact, and risk factors for arbovirus infection in many regions of the world. Our objectives were to describe the arboviruses associated with acute undifferentiated febrile illness in participating clinics in four countries in South America and to provide detailed epidemiological analysis of arbovirus infection in Iquitos, Peru, where more extensive monitoring was conducted. Methodology/Findings A clinic-based syndromic surveillance system was implemented in 13 locations in Ecuador, Peru, Bolivia, and Paraguay. Serum samples and demographic information were collected from febrile participants reporting to local health clinics or hospitals. Acute-phase sera were tested for viral infection by immunofluorescence assay or RT-PCR, while acute- and convalescent-phase sera were tested for pathogen-specific IgM by ELISA. Between May 2000 and December 2007, 20,880 participants were included in the study, with evidence for recent arbovirus infection detected for 6,793 (32.5%). Dengue viruses (Flavivirus) were the most common arbovirus infections, totaling 26.0% of febrile episodes, with DENV-3 as the most common serotype. Alphavirus (Venezuelan equine encephalitis virus [VEEV] and Mayaro virus [MAYV]) and Orthobunyavirus (Oropouche virus [OROV], Group C viruses, and Guaroa virus) infections were both observed in approximately 3% of febrile episodes. In Iquitos, risk factors for VEEV and MAYV infection included being male and reporting to a rural (vs urban) clinic. In contrast, OROV infection was similar between sexes and type of clinic. Conclusions/Significance Our data provide a better understanding of the geographic range of arboviruses in South America and highlight the diversity of pathogens in circulation. These arboviruses are currently significant causes of human illness in endemic regions but also have potential for further expansion. Our data provide a basis for analyzing changes in their ecology and epidemiology.
PLOS Neglected Tropical Diseases | 2010
Amy C. Morrison; Sharon L. Minnick; Claudio Rocha; Brett M. Forshey; Steven T. Stoddard; Arthur Getis; Dana A. Focks; Kevin L. Russell; James G. Olson; Patrick J. Blair; Douglas M. Watts; Moises Sihuincha; Thomas W. Scott; Tadeusz J. Kochel
Background Comprehensive, longitudinal field studies that monitor both disease and vector populations for dengue viruses are urgently needed as a pre-requisite for developing locally adaptable prevention programs or to appropriately test and license new vaccines. Methodology and Principal Findings We report the results from such a study spanning 5 years in the Amazonian city of Iquitos, Peru where DENV infection was monitored serologically among ∼2,400 members of a neighborhood-based cohort and through school-based absenteeism surveillance for active febrile illness among a subset of this cohort. At baseline, 80% of the study population had DENV antibodies, seroprevalence increased with age, and significant geographic variation was observed, with neighborhood-specific age-adjusted rates ranging from 67.1 to 89.9%. During the first 15 months, when DENV-1 and DENV-2 were co-circulating, population-based incidence rates ranged from 2–3 infections/100 person-years (p-years). The introduction of DENV-3 during the last half of 2001 was characterized by 3 distinct periods: amplification over at least 5–6 months, replacement of previously circulating serotypes, and epidemic transmission when incidence peaked at 89 infections/100 p-years. Conclusions/Significance Neighborhood-specific baseline seroprevalence rates were not predictive of geographic incidence patterns prior to the DENV-3 introduction, but were closely mirrored during the invasion of this serotype. Transmission varied geographically, with peak incidence occurring at different times among the 8 geographic zones in ∼16 km2 of the city. The lag from novel serotype introduction to epidemic transmission and knowledge of spatially explicit areas of elevated risk should be considered for more effective application of limited resources for dengue prevention.
PLOS ONE | 2009
V. Alberto Laguna-Torres; Jorge Gomez; Victor Ocaña; Patricia V. Aguilar; Tatiana Saldarriaga; Edward Chávez; Juan Perez; Hernán Zamalloa; Brett M. Forshey; Irmia Paz; Elizabeth Blanca Crespo Gómez; Roel Ore; Gloria Chauca; Ernesto Ortiz; Manuel V. Villaran; Stalin Vilcarromero; Claudio Rocha; Omayra Chincha; Gerardo Jiménez; Miguel Villanueva; Edwar Pozo; Jackeline Aspajo; Tadeusz J. Kochel
Background Acute respiratory illnesses and influenza-like illnesses (ILI) are a significant source of morbidity and mortality worldwide. Despite the public health importance, little is known about the etiology of these acute respiratory illnesses in many regions of South America. In 2006, the Peruvian Ministry of Health (MoH) and the US Naval Medical Research Center Detachment (NMRCD) initiated a collaboration to characterize the viral agents associated with ILI and to describe the clinical and epidemiological presentation of the affected population. Methodology/Principal Findings Patients with ILI (fever ≥38°C and cough or sore throat) were evaluated in clinics and hospitals in 13 Peruvian cities representative of the four main regions of the country. Nasal and oropharyngeal swabs, as well as epidemiological and demographic data, were collected from each patient. During the two years of this study (June 2006 through May 2008), a total of 6,835 patients, with a median age of 13 years, were recruited from 31 clinics and hospitals; 6,308 were enrolled by regular passive surveillance and 527 were enrolled as part of outbreak investigations. At least one respiratory virus was isolated from the specimens of 2,688 (42.6%) patients, with etiologies varying by age and geographical region. Overall the most common viral agents isolated were influenza A virus (25.1%), influenza B virus (9.7%), parainfluenza viruses 1, 2, and 3, (HPIV-1,-2,-3; 3.2%), herpes simplex virus (HSV; 2.6%), and adenoviruses (1.8%). Genetic analyses of influenza virus isolates demonstrated that three lineages of influenza A H1N1, one lineage of influenza A H3N2, and two lineages of influenza B were circulating in Peru during the course of this study. Conclusions To our knowledge this is the most comprehensive study to date of the etiologic agents associated with ILI in Peru. These results demonstrate that a wide range of respiratory pathogens are circulating in Peru and this fact needs to be considered by clinicians when treating patients reporting with ILI. Furthermore, these data have implications for influenza vaccine design and implementation in South America.
The Journal of Infectious Diseases | 2013
Sandra Olkowski; Brett M. Forshey; Amy C. Morrison; Claudio Rocha; Stalin Vilcarromero; Eric S. Halsey; Tadeusz J. Kochel; Thomas W. Scott; Steven T. Stoddard
BACKGROUND Antibodies induced by infection with any 1 of 4 dengue virus (DENV) serotypes (DENV-1-4) may influence the clinical outcome of subsequent heterologous infections. To quantify potential cross-protective effects, we estimated disease risk as a function of DENV infection, using data from longitudinal studies performed from September 2006 through February 2011 in Iquitos, Peru, during periods of DENV-3 and DENV-4 transmission. METHODS DENV infections before and during the study period were determined by analysis of serial serum samples with virus neutralization tests. Third and fourth infections were classified as postsecondary infections. Dengue fever cases were detected by door-to-door surveillance for acute febrile illness. RESULTS Among susceptible participants, 39% (420/1077) and 53% (1595/2997) seroconverted to DENV-3 and DENV-4, respectively. Disease was detected in 7% of DENV-3 infections and 10% of DENV-4 infections. Disease during postsecondary infections was reduced by 93% for DENV-3 and 64% for DENV-4, compared with primary and secondary infections. Despite lower disease rates, postsecondary infections constituted a significant proportion of apparent infections (14% [for DENV-3 infections], 45% [for DENV-4 infections]). CONCLUSIONS Preexisting heterotypic antibodies markedly reduced but did not eliminate the risk of disease in this study population. These results improve understanding of how preinfection history can be associated with dengue outcomes and DENV transmission dynamics.
PLOS Neglected Tropical Diseases | 2012
Kelly A. Liebman; Steven T. Stoddard; Amy C. Morrison; Claudio Rocha; Sharon L. Minnick; Moises Sihuincha; Kevin L. Russell; James G. Olson; Patrick J. Blair; Douglas M. Watts; Tadeusz J. Kochel; Thomas W. Scott
Background Knowledge of spatial patterns of dengue virus (DENV) infection is important for understanding transmission dynamics and guiding effective disease prevention strategies. Because movement of infected humans and mosquito vectors plays a role in the spread and persistence of virus, spatial dimensions of transmission can range from small household foci to large community clusters. Current understanding is limited because past analyses emphasized clinically apparent illness and did not account for the potentially large proportion of inapparent infections. In this study we analyzed both clinically apparent and overall infections to determine the extent of clustering among human DENV infections. Methodology/Principal Findings We conducted spatial analyses at global and local scales, using acute case and seroconversion data from a prospective longitudinal cohort in Iquitos, Peru, from 1999–2003. Our study began during a period of interepidemic DENV-1 and DENV-2 transmission and transitioned to epidemic DENV-3 transmission. Infection status was determined by seroconversion based on plaque neutralization testing of sequential blood samples taken at approximately six-month intervals, with date of infection assigned as the middate between paired samples. Each year was divided into three distinct seasonal periods of DENV transmission. Spatial heterogeneity was detected in baseline seroprevalence for DENV-1 and DENV-2. Cumulative DENV-3 seroprevalence calculated by trimester from 2001–2003 was spatially similar to preexisting DENV-1 and DENV-2 seroprevalence. Global clustering (case-control Ripleys K statistic) appeared at radii of ∼200–800 m. Local analyses (Kuldorf spatial scan statistic) identified eight DENV-1 and 15 DENV-3 clusters from 1999–2003. The number of seroconversions per cluster ranged from 3–34 with radii from zero (a single household) to 750 m; 65% of clusters had radii >100 m. No clustering was detected among clinically apparent infections. Conclusions/Significance Seroprevalence of previously circulating DENV serotypes can be a predictor of transmission risk for a different invading serotype and, thus, identify targets for strategically placed surveillance and intervention. Seroprevalence of a specific serotype is also important, but does not preclude other contributing factors, such as mosquito density, in determining where transmission of that virus will occur. Regardless of the epidemiological context or virus serotype, human movement appears to be an important factor in defining the spatial dimensions of DENV transmission and, thus, should be considered in the design and evaluation of surveillance and intervention strategies.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Robert C. Reiner; Steven T. Stoddard; Brett M. Forshey; Aaron A. King; Alicia M. Ellis; Alun L. Lloyd; Kanya C. Long; Claudio Rocha; Stalin Vilcarromero; Helvio Astete; Isabel Bazan; Audrey Lenhart; Gonzalo M. Vazquez-Prokopec; Valerie A. Paz-Soldan; Philip McCall; Uriel Kitron; John P. Elder; Eric S. Halsey; Amy C. Morrison; Tadeusz J. Kochel; Thomas W. Scott
Significance Using mathematical models to extend knowledge of pathogen transmission and recommend optimized control efforts is dependent on the accuracy of model parameters. The rate at which susceptible individuals become infected [the force of infection (FoI)] is one of the most important parameters, but due to data constraints it is often incorrectly assumed to be constant over time. Using a bespoke method for a 12-y longitudinal dataset of serotype-specific dengue virus (DENV) infections, we estimated time-varying, serotype-specific FoIs for all four DENV serotypes. The FoI varied markedly in time, which implies that DENV transmission dynamics are complex and are best summarized using time-dependent transmission parameters. Our results provide more accurate measures of virus transmission dynamics and a basis for improving selection of control and disease prevention strategies. Infectious disease models play a key role in public health planning. These models rely on accurate estimates of key transmission parameters such as the force of infection (FoI), which is the per-capita risk of a susceptible person being infected. The FoI captures the fundamental dynamics of transmission and is crucial for gauging control efforts, such as identifying vaccination targets. Dengue virus (DENV) is a mosquito-borne, multiserotype pathogen that currently infects ∼390 million people a year. Existing estimates of the DENV FoI are inaccurate because they rely on the unrealistic assumption that risk is constant over time. Dengue models are thus unreliable for designing vaccine deployment strategies. Here, we present to our knowledge the first time-varying (daily), serotype-specific estimates of DENV FoIs using a spline-based fitting procedure designed to examine a 12-y, longitudinal DENV serological dataset from Iquitos, Peru (11,703 individuals, 38,416 samples, and 22,301 serotype-specific DENV infections from 1999 to 2010). The yearly DENV FoI varied markedly across time and serotypes (0–0.33), as did daily basic reproductive numbers (0.49–4.72). During specific time periods, the FoI fluctuations correlated across serotypes, indicating that different DENV serotypes shared common transmission drivers. The marked variation in transmission intensity that we detected indicates that intervention targets based on one-time estimates of the FoI could underestimate the level of effort needed to prevent disease. Our description of dengue virus transmission dynamics is unprecedented in detail, providing a basis for understanding the persistence of this rapidly emerging pathogen and improving disease prevention programs.
American Journal of Tropical Medicine and Hygiene | 2012
Allan R. Brasier; Hyunsu Ju; Josefina Garcia; Heidi Spratt; Sundar Victor; Brett M. Forshey; Eric S. Halsey; Guillermo Comach; Gloria Sierra; Patrick J. Blair; Claudio Rocha; Amy C. Morrison; Thomas W. Scott; Isabel Bazan; Tadeusz J. Kochel
Dengue virus infections are a major cause of morbidity in tropical countries. Early detection of dengue hemorrhagic fever (DHF) may help identify individuals that would benefit from intensive therapy. Predictive modeling was performed using 11 laboratory values of 51 individuals (38 DF and 13 DHF) obtained on initial presentation using logistic regression. We produced a robust model with an area under the curve of 0.9615 that retained IL-10 levels, platelets, and lymphocytes as the major predictive features. A classification and regression tree was developed on these features that were 86% accurate on cross-validation. The IL-10 levels and platelet counts were also identified as the most informative features associated with DHF using a Random Forest classifier. In the presence of polymerase chain reaction-proven acute dengue infections, we suggest a complete blood count and rapid measurement of IL-10 can assist in the triage of potential DHF cases for close follow-up or clinical intervention improving clinical outcome.
Emerging Infectious Diseases | 2009
Brett M. Forshey; Amy C. Morrison; Cristhopher Cruz; Claudio Rocha; Stalin Vilcarromero; Carolina Guevara; Daría Elena Camacho; Araceli Alava; César Madrid; Luis Beingolea; Victor Suárez; Guillermo Comach; Tadeusz J. Kochel
In 2008, dengue virus serotype 4 (DENV-4) emerged in northeastern Peru, causing a large outbreak and displacing DENV-3, which had predominated for the previous 6 years. Phylogenetic analysis of 2008 and 2009 isolates support their inclusion into DENV-4 genotype II, forming a lineage distinct from strains that had previously circulated in the region.
PLOS Neglected Tropical Diseases | 2008
Amy C. Morrison; Brett M. Forshey; Desiree Notyce; Helvio Astete; Victor Lopez; Claudio Rocha; Rebecca Carrion; Cristhiam Carey; Dominique Eza; Joel M. Montgomery; Tadeusz J. Kochel
Enzootic strains of Venezuelan equine encephalitis virus (VEEV) have been isolated from febrile patients in the Peruvian Amazon Basin at low but consistent levels since the early 1990s. Through a clinic-based febrile surveillance program, we detected an outbreak of VEEV infections in Iquitos, Peru, in the first half of 2006. The majority of these patients resided within urban areas of Iquitos, with no report of recent travel outside the city. To characterize the risk factors for VEEV infection within the city, an antibody prevalence study was carried out in a geographically stratified sample of urban areas of Iquitos. Additionally, entomological surveys were conducted to determine if previously incriminated vectors of enzootic VEEV were present within the city. We found that greater than 23% of Iquitos residents carried neutralizing antibodies against VEEV, with significant associations between increased antibody prevalence and age, occupation, mosquito net use, and overnight travel. Furthermore, potential vector mosquitoes were widely distributed across the city. Our results suggest that while VEEV infection is more common in rural areas, transmission also occurs within urban areas of Iquitos, and that further studies are warranted to identify the precise vectors and reservoirs involved in urban VEEV transmission.
PLOS Neglected Tropical Diseases | 2014
Steven T. Stoddard; Helen J. Wearing; Robert C. Reiner; Amy C. Morrison; Helvio Astete; Stalin Vilcarromero; Carlos Álvarez; Cesar Ramal-Asayag; Moises Sihuincha; Claudio Rocha; Eric S. Halsey; Thomas W. Scott; Tadeusz J. Kochel; Brett M. Forshey
Introduction Long-term disease surveillance data provide a basis for studying drivers of pathogen transmission dynamics. Dengue is a mosquito-borne disease caused by four distinct, but related, viruses (DENV-1-4) that potentially affect over half the worlds population. Dengue incidence varies seasonally and on longer time scales, presumably driven by the interaction of climate and host susceptibility. Precise understanding of dengue dynamics is constrained, however, by the relative paucity of laboratory-confirmed longitudinal data. Methods We studied 10 years (2000–2010) of laboratory-confirmed, clinic-based surveillance data collected in Iquitos, Peru. We characterized inter and intra-annual patterns of dengue dynamics on a weekly time scale using wavelet analysis. We explored the relationships of case counts to climatic variables with cross-correlation maps on annual and trimester bases. Findings Transmission was dominated by single serotypes, first DENV-3 (2001–2007) then DENV-4 (2008–2010). After 2003, incidence fluctuated inter-annually with outbreaks usually occurring between October and April. We detected a strong positive autocorrelation in case counts at a lag of ∼70 weeks, indicating a shift in the timing of peak incidence year-to-year. All climatic variables showed modest seasonality and correlated weakly with the number of reported dengue cases across a range of time lags. Cases were reduced after citywide insecticide fumigation if conducted early in the transmission season. Conclusions Dengue case counts peaked seasonally despite limited intra-annual variation in climate conditions. Contrary to expectations for this mosquito-borne disease, no climatic variable considered exhibited a strong relationship with transmission. Vector control operations did, however, appear to have a significant impact on transmission some years. Our results indicate that a complicated interplay of factors underlie DENV transmission in contexts such as Iquitos.