Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claus Bässler is active.

Publication


Featured researches published by Claus Bässler.


Oecologia | 2012

Aggregative response in bats: Prey abundance versus habitat

Jörg Müller; Milenka Mehr; Claus Bässler; M. Brock Fenton; Torsten Hothorn; Hans Pretzsch; Hans-Joachim Klemmt; Roland Brandl

In habitats where prey is either rare or difficult to predict spatiotemporally, such as open habitats, predators must be adapted to react effectively to variations in prey abundance. Open-habitat foraging bats have a wing morphology adapted for covering long distances, possibly use information transfer to locate patches of high prey abundance, and would therefore be expected to show an aggregative response at these patches. Here, we examined the effects of prey abundance on foraging activities of open-habitat foragers in comparison to that of edge-habitat foragers and closed-habitat foragers. Bat activity was estimated by counting foraging calls recorded with bat call recorders (38,371 calls). Prey abundance was estimated concurrently at each site using light and pitfall traps. The habitat was characterized by terrestrial laser scanning. Prey abundance increased with vegetation density. As expected, recordings of open-habitat foragers clearly decreased with increasing vegetation density. The foraging activity of edge- and closed-habitat foragers was not significantly affected by the vegetation density, i.e., these guilds were able to forage from open habitats to habitats with dense vegetation. Only open-habitat foragers displayed a significant and proportional aggregative response to increasing prey abundance. Our results suggest that adaptations for effective and low-cost foraging constrains habitat use and excludes the guild of open-habitat foragers from foraging in habitats with high prey abundance, such as dense forest stands.


Ecological Applications | 2011

Spinning a laser web: predicting spider distributions using LiDAR

Kerri T. Vierling; Claus Bässler; Roland Brandl; Lee A. Vierling; I. Weiß; Jörg Müller

LiDAR remote sensing has been used to examine relationships between vertebrate diversity and environmental characteristics, but its application to invertebrates has been limited. Our objectives were to determine whether LiDAR-derived variables could be used to accurately describe single-species distributions and community characteristics of spiders in remote forested and mountainous terrain. We collected over 5300 spiders across multiple transects in the Bavarian National Park (Germany) using pitfall traps. We examined spider community characteristics (species richness, the Shannon index, the Simpson index, community composition, mean body size, and abundance) and single-species distribution and abundance with LiDAR variables and ground-based measurements. We used the R2 and partial R2 provided by variance partitioning to evaluate the predictive power of LiDAR-derived variables compared to ground measurements for each of the community characteristics. The total adjusted R2 for species richness, the Shannon index, community species composition, and body size had a range of 25-57%. LiDAR variables and ground measurements both contributed >80% to the total predictive power. For species composition, the explained variance was approximately 32%, which was significantly greater than expected by chance. The predictive power of LiDAR-derived variables was comparable or superior to that of the ground-based variables for examinations of single-species distributions, and it explained up to 55% of the variance. The predictability of species distributions was higher for species that had strong associations with shade in open-forest habitats, and this niche position has been well documented across the European continent for spider species. The similar statistical performance between LiDAR and ground-based measures at our field sites indicated that deriving spider community and species distribution information using LiDAR data can provide not only high predictive power at relatively low cost, but may also allow unprecedented mapping of community- and species-level spider information at scales ranging from stands to landscapes. Therefore, LiDAR is a viable tool to assist species-specific conservation as well as broader biodiversity planning efforts not only for a growing list of vertebrates, but for invertebrates as well.


Journal of Applied Ecology | 2016

Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle.

Rupert Seidl; Jörg Müller; Torsten Hothorn; Claus Bässler; Marco Heurich; Markus Kautz

1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4.Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management.


Journal of Applied Ecology | 2016

Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood

Sebastian Seibold; Claus Bässler; Roland Brandl; Boris Büche; Alexander Szallies; Simon Thorn; Michael D. Ulyshen; Jörg Müller

Summary Resource availability and habitat heterogeneity are principle drivers of biodiversity, but their individual roles often remain unclear since both factors are usually correlated. The biodiversity of species dependent on dead wood could be driven by either resource availability represented by dead-wood amount or habitat heterogeneity characterized by dead-wood diversity or both. Understanding their roles is crucial for improving evidence-based conservation strategies for saproxylic species in managed forests. To disentangle the effects of dead-wood amount and dead-wood diversity on biodiversity relative to canopy openness (microclimate), we experimentally exposed different amounts of logs and branches of two different tree species representing a gradient of dead-wood diversity in 190 sunny and shady forest plots. During the 3 years after exposing dead wood, we sampled saproxylic beetles, which are together with fungi the most diverse and important taxonomic group involved in decomposition of wood. The composition of saproxylic beetle assemblages differed clearly between shady and sunny forest plots, with higher richness in sunny plots. Both dead-wood amount and dead-wood diversity positively and independently affected species richness of saproxylic beetles, but these effects were mediated by canopy openness. In sunny forest, species richness increased with increasing amount of dead wood, whereas in shady forest, dead-wood diversity was the prevailing factor. The stepwise analysis of abundance and species richness, however, indicated that effects of both factors supported only the habitat-heterogeneity hypothesis, as the positive effect of high amounts of dead wood could be explained by cryptic variability of dead-wood quality within single objects. Synthesis and applications. As canopy openness and habitat heterogeneity seem to be the major drivers of saproxylic beetle diversity in temperate forests, we recommend that managers aim to increase the heterogeneity of dead-wood substrates under both sunny and shady forest conditions. Intentional opening of the canopy should be considered in anthropogenically homogenized, dense forests. Specifically in temperate mixed montane forests, dead wood should be provided in the form of large logs in sunny habitats and a high diversity of different dead-wood substrates should be retained or created in shady forests.


Journal of Applied Ecology | 2014

Near-to-nature logging influences fungal community assembly processes in a temperate forest

Claus Bässler; Raffael Ernst; Marc W. Cadotte; Christoph Heibl; Jörg Müller

Summary 1. As the Earth’s biota enters the sixth great mass extinction event recorded in the history of the planet, it is predicted that the erosion of biodiversity will result in the reduction of the goods and services that ecosystems provide. To mediate the loss of biodiversity and ecosystem function associated with wood production in temperate forests in Europe, a near-to-nature strategy has been developed. Whether this strategy enables natural assembly mechanisms of fungi responsible for major ecosystem processes is unknown. 2. We analysed variation in species richness and both the functional and phylogenetic structure of fungal assemblages of different trophic life histories (soil saprotrophic, wood saprotrophic, and ectomycorrhizal fungi) in 69 beech forest plots along a steep gradient of management intensity. We focused on reproductive traits to test the hypothesis that management intensity shifts community assembly mechanisms from limitations in niche overlap that promote the coexistence of dissimilar species to environmental filtering that selects for similar species. Specifically, we hypothesized that unpredictable resources in production forests filter the assemblages, promoting species with small fruit bodies and with small and elongated spores. 3. As management intensity increased, functional diversity decreased from a random pattern to a clustered pattern, which indicated that management intensity increased the strength of environmental filtering. However, phylogenetic diversity increased from a random pattern to an overdispersed pattern. Combining phylogenetic diversity with functional diversity did not provide additional insight into the traits but revealed a contrasting pattern. Reproduction traits of the assemblages shifted, with a decrease in mean fruit body size and an increase in spore elongation. 4. Synthesis and applications. Near-to-nature logging concepts are not able to mimic the major processes that shape fungal community assembly in protected forests. This could have severe consequences for important ecosystem functions provided by fungi. The phylogenetic overdispersion indicated that analyses of other traits in addition to reproductive traits are required to disentangle the factors affecting fungal community structure.


PLOS ONE | 2014

New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

Simon Thorn; Claus Bässler; Thomas K. Gottschalk; Torsten Hothorn; Heinz Bussler; Kenneth F. Raffa; Jörg Müller

Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests.


Biodiversity and Conservation | 2012

Diversity of wood-decaying fungi under different disturbance regimes—a case study from spruce mountain forests

Claus Bässler; Jörg Müller; Miroslav Svoboda; Anna Lepšová; Christoph Hahn; Heinrich Holzer; Václav Pouska

Rapid destruction of forest habitats has led to the establishment of protected areas in formerly managed forests with the aim of restoring biodiversity. Conservation in spruce-dominated reserves is often contradicted by salvage logging after insect outbreaks. Here we study the community characteristics of wood decaying fungi in a high montane Norway Spruce forest with three different management types: (1) a formerly managed area disturbed by a large-scale bark beetle outbreak, (2) an area with continuous salvage logging, and (3) an old-growth forest. Bark beetle activity in the disturbed area resulted in downed wood amounts comparable to those of the old-growth forest. However, species accumulation curves for the disturbed forest were more similar to those of the logged forest than to those of the old-growth forest. This arose because of differences in the diversity of wood decay classes; wood decay in the disturbed forest was more homogeneous. Logs in the disturbed forest originated almost exclusively from bark-beetle-infested trees, but the causes of tree mortality in the old-growth forest were manifold. Although most red-listed species were clearly confined to old-growth forest, Antrodiella citrinella was most abundant in the disturbed forest. Our analysis furthermore showed that the between stand scale is the most effective unit for diversity wood-decaying fungi. We therefore suggest a conservation strategy for preserving old-growth forests and establishing protected forest stands to enhance structural heterogeneity in spruce-dominated forests. For this, a careful screening of protected areas throughout Europe is necessary to provide managers with guidelines for conservation.


Biodiversity and Conservation | 2011

LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks

Claus Bässler; Jutta Stadler; Jörg Müller; Bernhard Förster; Axel Göttlein; Roland Brandl

Management strategies for the conservation of biodiversity can be developed only with precise information on the spatial distribution of organisms on relevant, mostly regional, spatial scales. Current surrogates for approximating the distribution of biodiversity are habitats mapped within a number of national and international frameworks (e.g., Natura 2000), even though conventional habitat mapping is time consuming and requires well-trained personnel. Here we evaluated the use of light detection and ranging (LiDAR) to map forest habitat types to simplify the process. We used available data of habitat types for the Bavarian Forest National Park as a basis to predict habitat types with LiDAR-derived variables. Furthermore, we compared these results with predictions based on extensive ground-based climate, soil and vegetation data. Using linear and flexible discriminant analyses, we found that LiDAR is able to predict forest habitat types with the same overall accuracy as the extensive ground data for climate, soil and vegetation composition. Subtle differences in the vegetation structure between habitat types, particularly in the vertical and horizontal vegetation profiles, were captured by LiDAR. These differences in the physiognomy were in part caused by changes in altitude, which also influence tree species composition. We propose that the most-efficient way to identify forest habitat types according Natura 2000 is to combine remote-sensing LiDAR data with well-directed field surveys.


Malacologia | 2009

Molluscs and Climate Warming in a Low Mountain Range National Park

Jörg Müller; Claus Bässler; Christian Strätz; Beate Klöcking; Roland Brandl

ABSTRACT Species restricted to the higher altitudes of low mountain ranges in Central Europe are among the species threatened. To quantify the influence of climate warming, we analysed the altitudinal distribution of mollusc species and modelled the occurrence and distribution of a high montane species under two scenarios of climate warming. Our analysis is based on samples of 3,437 individuals and 46 species collected at 111 localities. Number of individuals and species decreased with altitude. The slope of this decrease changed between 1,100 and 1,200 m a.s.l., which is the ecotone between mixed montane beech-fir-spruce and high-altitude spruce forests. In contrast to the majority of species and the number of species, the occurrence of Semilimax kotulae (Westerlund 1883), a Central European endemic, increased with altitude. Again, we found a change in the slope between 1,100 and 1,200 m a.s.l. Using geostatistical models of local temperature as well as spatial GLMs with Poisson and Gaussian errors, we modelled altitudinal distribution of diversity and species under consideration of environmental variables. Especially habitat age was an important predictor for the abundance of many species. For the high montane species S. kotulae, our model predicts a decrease in occurrence and abundance with global warming. Although global warming will lead to an overall increase in number of species, species occurring only at higher elevations, such as the S. kotulae, will probably become extinct within the study area.


PLOS ONE | 2013

Insects Overshoot the Expected Upslope Shift Caused by Climate Warming

Claus Bässler; Torsten Hothorn; Roland Brandl; Jörg Müller

Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902–1904 and 2006–2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes.

Collaboration


Dive into the Claus Bässler's collaboration.

Top Co-Authors

Avatar

Jörg Müller

Bavarian Forest National Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Thorn

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Ulf Büntgen

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Einar Heegaard

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge