Claus Cornett
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claus Cornett.
Free Radical Research | 1998
Lars Viborg Jørgensen; Claus Cornett; Ulla Justesen; Leif H. Skibsted; Lars O. Dragsted
Bulk electrolysis of the antioxidant flavonoids quercetin and kaempferol in acetonitrile both yield a single oxidation product in two-electron processes. The oxidation products are more polar than their parent compounds, with an increased molecular weight of 16g/mol, and were identified as 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone and 2-(4-hydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone for quercetin and kaempferol, respectively. Two-electron oxidation of the parent flavonoid is suggested to yield a 3,4-flavandione with unchanged substitution pattern in the A- and B-ring, which may rearrange to form the substituted 3(2H)-benzofuranone through the chalcan-trione ring-chain tautomer. The acidity of the 3-OH group is suggested to determine the fate of the flavonoid phenoxyl radical, originally formed by one-electron oxidation, as no well-defined oxidation product of luteolin (lacking the 3-OH group) could be isolated despite rather similar half-peak potentials: Ep/2 = 0.97V, 0.98 V and 1.17 V vs. NHE for quercetin, kaempferol and luteolin, respectively, as measured by cyclic voltammetry in acetonitrile.
Journal of Analytical Atomic Spectrometry | 1992
Steen Honoré Hansen; Erik Huusfeldt Larsen; Gunnar Pritzl; Claus Cornett
Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting the HPLC column to the nebulizer of the atomic absorption spectrometer. Arsenite, arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) were separated from each other and from the co-injected cationic arsenic compounds, arsenobetaine (AsB), arsenocholine (AsC) and the tetramethylarsonium ion (TMAs) on an organic polymeric anion-exchange column with 0.1 mol dm–3 carbonate at pH 10.3 as the mobile phase. The three cationic species were separated from each other and from the co-injected anionic species on a silica based cation-exchange column with pyridine at a pH of 2.65 as the mobile phase. The signal-to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen–argon–entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in µg cm–3, using 100 mm3 injections of mixtures of arsenic standards into the HPLC system were: arsenite, AsIII 1.1; arsenate, Asv 1.4; MMA 1.4; DMA 0.7; AsB 0.3; AsC 0.5; and the TMAs 0.4. The HPLC–AAS system was used for the analysis of arsenic species in aqueous extracts of soil samples from a polluted land site. Only arsenate was found in the soil extracts. For comparison, inductively coupled plasma mass spectrometry was also used as an on-line detection technique with the same HPLC systems.
Journal of Physical Chemistry B | 2008
Vito Foderà; Minna Groenning; Valeria Vetri; Fabio Librizzi; Salvatore Spagnolo; Claus Cornett; Lars Olsen; Marco van de Weert; Maurizio Leone
The fluorescent dye thioflavin T (ThT) is commonly used for in situ amyloid fibril detection. In this work, we focused on the spectroscopic properties and chemical stability of ThT in aqueous solution as a function of pH, temperature, and dye concentration. A reversible hydroxylation process occurs in alkaline solutions, which was characterized using a combination of UV-vis absorption spectroscopy, proton NMR, and density functional theory (DFT). On the basis of these studies, we propose a chemical structure for the hydroxylated form. Finally, by means of fluorescence spectroscopy, ThT hydroxylation effects on in situ amyloid detection have been investigated, providing new insights on the efficiency of the ThT assay for quantitative fibril evaluation at basic pH.
Journal of Proteome Research | 2010
Michael Lauridsen; Henning Bliddal; Robin Christensen; Bente Danneskiold-Samsøe; Robert M. Bennett; Hector C. Keun; John C. Lindon; Jeremy K. Nicholson; Mikkel H Dorff; Jerzy W. Jaroszewski; Steen H. Hansen; Claus Cornett
1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow-up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity. The results also supported the link between RA and coronary artery disease. Repeated assessment using mixed linear models showed that the predictors obtained from metabolic profiles of plasma at baseline from patients with active RA were significantly different from those of patients in remission (P=0.0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P=0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited for discovery of biomarkers and may be a potential approach for disease monitoring and personalized medication for RA therapy.
Molecular Pharmaceutics | 2011
Johan Boetker; Marja Savolainen; Vishal Koradia; Fang Tian; Thomas Rades; Anette Müllertz; Claus Cornett; Jukka Rantanen; Jesper Østergaard
Traditional dissolution testing determines drug release to the bulk, but does not enable an understanding of the events happening close to the surface of a solid or a tablet. UV imaging is a new imaging approach that can be used to study the dissolution behavior of chemical compounds. The UV imaging instrumentation offers recording of absorbance maps with a high spatial and temporal resolution which facilitates the abundant collection of information regarding the evolving solution concentrations. In this study, UV imaging was used to visualize the dissolution behavior of amlodipine besylate (amorphous and dihydrate forms) and amlodipine free base. The dissolution of amlodipine besylate was faster from the amorphous form than from the crystalline forms. The UV imaging investigations suggested that a solvent mediated phase transformation occurred for the amorphous amlodipine besylate and the amlodipine free base samples. Raman spectroscopy was used to confirm and probe the changes at the solid surface occurring upon contact with the dissolution media and verified the recrystallization of the amorphous form to the monohydrate. The combination of UV imaging and Raman spectroscopy is an efficient tool to obtain a deeper insight into the early events of the dissolution process.
Journal of Biomedical Science | 2010
Svend Høime Hansen; Mogens Larsen Andersen; Claus Cornett; Robert Gradinaru; Niels Grunnet
The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range and its pKa value is determined to 9.0 (25°C) and 8.6 (37°C), respectively. Localisation of such a low-molecular buffer in the mitochondrial matrix, transforms the matrix into a biochemical reaction chamber for the important matrix-localised enzyme systems. Three acyl-CoA dehydrogenase enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes.
Analytical Chemistry | 2008
Morten Allesø; Sitaram P. Velaga; Amjad Alhalaweh; Claus Cornett; Morten Rasmussen; Frans van den Berg; Heidi Lopez de Diego; Jukka Rantanen
Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.
Advances in Experimental Medicine and Biology | 2006
Svend Høime Hansen; Mogens Larsen Andersen; Henrik Birkedal; Claus Cornett
Several studies have demonstrated that especially high taurine concentrations are found in tissues with high oxidative activity, whereas lower concentrations are found in tissues with primary glycolytic activity. Based on such observations, we have studied if taurine is involved in mitochondrial oxidation. Several pieces of information have demonstrated taurine localisation in the mitochondria. We have developed a general biochemical model with preliminary data demonstrating the important role of taurine as mitochondrial matrix buffer for stabilising the mitochondrial oxidation. The model can have far-reaching perspectives, e.g., explaining the often-suggested anti-oxidative role of taurine, in contrast to the fact that taurine is very difficult to chemically oxidise. By stabilising the environment in the mitochondria, taurine will prevent leakage of the reactive compounds formed in the reactive mitochondrial environment and thus indirectly act as an antioxidant. Consequently, the model represents a new concept for understanding mitochondrial dysfunction by emphasising the importance of taurine for providing sufficient pH buffering in the mitochondrial matrix.
Nature | 1998
Jens M. Olesen; Nina Rønsted; Ulrik Tolderlund; Claus Cornett; Per Mølgaard; Jørn Madsen; Carl G. Jones; Carl Erik Olsen
Floral nectar is rich in chemicals and induces pollination. Although it may be tainted by algae or mould, it usually lacks colouring agents. However, a few plant species in Mauritius break this rule and produce red nectar. We attempted to find a function for this coloration, but its role remains unclear.
Journal of Pharmaceutical and Biomedical Analysis | 2004
Anne Kruse Lykkeberg; Bent Halling-Sørensen; Claus Cornett; Jette Tjørnelund; Steen Honoré Hansen
A liquid chromatographic-tandem mass spectrometric method using an Xterra MS C(18) chromatographic column ( 100 mm x 2.1 mm i.d., 3.5microm) that allows complete separation of oxytetracycline (OTC) and the impurities: 4-epi-oxytetracycline (EOTC), tetracycline (TC), 4-epi-tetracycline (ETC), 2-acetyl-2-decarboxamido-oxytetracycline (ADOTC), alpha-apo-oxytetracycline (alpha-AOTC) and beta-apo-oxytetracycline (beta-AOTC) was developed. Gradient elution was used and calibration curves were obtained using the scan mode selected reaction monitoring (SRM). Acceptable correlations were obtained for OTC, TC, EOTC and ADOTC whereas the correlations of alpha-AOTC and beta-AOTC were less accurate resulting in higher limits of quantification (LOQ) and limits of detection (LOD) relative to the other compounds. The intraday and interday accuracy varied for all the compounds from 90 to 112% and the intraday and interday precision were lower than 7.1%. The method was applied for analysis of commercial available ointments containing OTC resulting in an acceptable quantification of OTC and the impurities in the drug preparations. The advantage of this method compared to the other separation methods is an empty separation window right after the large peak corresponding to OTC in the chromatogram, which facilitates an accurate determination of ADOTC and the other impurities.