Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claus Heiner Bang-Berthelsen is active.

Publication


Featured researches published by Claus Heiner Bang-Berthelsen.


Experimental Diabetes Research | 2012

Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression

Lotte B. Nielsen; Cheng Wang; Kaspar Sørensen; Claus Heiner Bang-Berthelsen; Lars Kai Hansen; Marie-Louise M. Andersen; Philip Hougaard; Anders Juul; Chen-Yu Zhang; Flemming Pociot; Henrik B. Mortensen

This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRNAs expression levels to beta-cell function and glycaemic control. Global miRNA sequencing analyses were performed on sera pools from two T1D cohorts (n = 275 and 129, resp.) and one control group (n = 151). We identified twelve upregulated human miRNAs in T1D patients (miR-152, miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, miR-27b, miR-25, miR-200a); several of these miRNAs were linked to apoptosis and beta-cell networks. Furthermore, we identified miR-25 as negatively associated with residual beta-cell function (est.: −0.12, P = 0.0037), and positively associated with glycaemic control (HbA1c) (est.: 0.11, P = 0.0035) 3 months after onset. In conclusion this study demonstrates that miR-25 might be a “tissue-specific” miRNA for glycaemic control 3 months after diagnosis in new onset T1D children and therefore supports the role of circulating miRNAs as predictive biomarkers for tissue physiopathology and potential intervention targets.


Diabetes | 2012

Identification of Novel Type 1 Diabetes Candidate Genes by Integrating Genome-Wide Association Data, Protein-Protein Interactions, and Human Pancreatic Islet Gene Expression

Regine Bergholdt; Caroline Brorsson; Albert Pallejà; Lukas Adrian Berchtold; Tina Fløyel; Claus Heiner Bang-Berthelsen; Klaus Stensgaard Frederiksen; Lars Juhl Jensen; Joachim Størling; Flemming Pociot

Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated genes (CD83, IFNGR1, IL17RD, TRAF3IP2, IL27RA, PLCG2, MYO1B, and CXCR7) in these networks also harbored single nucleotide polymorphisms nominally associated with type 1 diabetes. Finally, the expression and cytokine regulation of these new candidate genes were confirmed in insulin-secreting INS-1 β-cells. Our results provide novel insight to the mechanisms behind type 1 diabetes pathogenesis and, thus, may provide the basis for the design of novel treatment strategies.


PLOS ONE | 2010

High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression.

Rikard G. Fred; Claus Heiner Bang-Berthelsen; Thomas Mandrup-Poulsen; Lars Groth Grunnet; Nils Welsh

Background Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3′-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. Methodology/Principal Findings Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1β and IFN-γ, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. Conclusion Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis

Lukas Adrian Berchtold; Zenia M Størling; Fernanda Ortis; Kasper Lage; Claus Heiner Bang-Berthelsen; Regine Bergholdt; Jacob Hald; Caroline Brorsson; Decio L. Eizirik; Flemming Pociot; Søren Brunak; Joachim Størling

Type 1 diabetes (T1D) is a complex disease characterized by the loss of insulin-secreting β-cells. Although the disease has a strong genetic component, and several loci are known to increase T1D susceptibility risk, only few causal genes have currently been identified. To identify disease-causing genes in T1D, we performed an in silico “phenome–interactome analysis” on a genome-wide linkage scan dataset. This method prioritizes candidates according to their physical interactions at the protein level with other proteins involved in diabetes. A total of 11 genes were predicted to be likely disease genes in T1D, including the INS gene. An unexpected top-scoring candidate gene was huntingtin-interacting protein (HIP)-14/ZDHHC17. Immunohistochemical analysis of pancreatic sections demonstrated that HIP14 is almost exclusively expressed in insulin-positive cells in islets of Langerhans. RNAi knockdown experiments established that HIP14 is an antiapoptotic protein required for β-cell survival and glucose-stimulated insulin secretion. Proinflammatory cytokines (IL-1β and IFN-γ) that mediate β-cell dysfunction in T1D down-regulated HIP14 expression in insulin-secreting INS-1 cells and in isolated rat and human islets. Overexpression of HIP14 was associated with a decrease in IL-1β–induced NF-κB activity and protection against IL-1β–mediated apoptosis. Our study demonstrates that the current network biology approach is a valid method to identify genes of importance for T1D and may therefore embody the basis for more rational and targeted therapeutic approaches.


PLOS ONE | 2013

Differential plasma microRNA profiles in HBeAg positive and HBeAg negative children with chronic hepatitis B.

Thilde Nordmann Winther; Claus Heiner Bang-Berthelsen; Ida Louise Heiberg; Flemming Pociot; Birthe Hogh

Background and Aim Children chronically infected with hepatitis B virus (HBV) are at high risk of progressive liver disease. However, no treatment is available that is consistently effective in curing chronic hepatitis B (CHB) in children. Improved understanding of the natural course of disease is warranted. Identification of specific microRNA (miRNA) profiles in children chronically infected with HBV may provide insight into the pathogenesis of CHB and lead to advances in the management of children with CHB. Patients and Methods MiRNA PCR panels were employed to screen plasma levels of 739 miRNAs in pooled samples from HBeAg positive, HBeAg negative, and healthy children. The three groups’ plasma miRNA profiles were compared, and aberrantly expressed miRNAs were identified. The identified miRNAs were then validated. Individual RT-qPCRs were performed on plasma from 34 HBeAg positive, 26 HBeAg negative, and 60 healthy children. Results A panel of 16 plasma miRNAs were identified as aberrantly expressed in HBeAg positive and HBeAg negative children (p<0.001). Levels of all of the miRNAs were upregulated in HBeAg positive children compared with in HBeAg negative children. A positive correlation was furthermore found between plasma levels of the identified miRNAs and HBV DNA (p<0.001). Conclusion We are the first to investigate the plasma miRNA profile of children chronically infected with HBV. Our data indicates the existence of a relationship between abundance of circulating miRNAs and immunological stages in the natural course of disease. Certain miRNAs may contribute to the establishment and maintenance of CHB in children. Further studies are warranted to advance understanding of miRNAs in the pathogenesis of CHB, hopefully leading to the identification of future therapeutic targets.


BMC Endocrine Disorders | 2009

Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?

Lærke Egefjord; Jens Ledet Jensen; Claus Heiner Bang-Berthelsen; Andreas Brønden Petersen; Kamille Smidt; Ole Schmitz; A E Karlsen; Flemming Pociot; Fabrice Chimienti; Jørgen Rungby; Nils E. Magnusson

Backgroundβ-cells are extremely rich in zinc and zinc homeostasis is regulated by zinc transporter proteins. β-cells are sensitive to cytokines, interleukin-1β (IL-1β) has been associated with β-cell dysfunction and -death in both type 1 and type 2 diabetes. This study explores the regulation of zinc transporters following cytokine exposure.MethodsThe effects of cytokines IL-1β, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) on zinc transporter gene expression were measured in INS-1-cells and rat pancreatic islets. Being the more sensitive transporter, we further explored ZnT8 (Slc30A8): the effect of ZnT8 over expression on cytokine induced apoptosis was investigated as well as expression of the insulin gene and two apoptosis associated genes, BAX and BCL2.ResultsOur results showed a dynamic response of genes responsible for β-cell zinc homeostasis to cytokines: IL-1β down regulated a number of zinc-transporters, most strikingly ZnT8 in both islets and INS-1 cells. The effect was even more pronounced when mixing the cytokines. TNF-α had little effect on zinc transporter expression. IFN-γ down regulated a number of zinc transporters. Insulin expression was down regulated by all cytokines. ZnT8 over expressing cells were more sensitive to IL-1β induced apoptosis whereas no differences were observed with IFN-γ, TNF-α, or a mixture of cytokines.ConclusionThe zinc transporting system in β-cells is influenced by the exposure to cytokines. Particularly ZnT8, which has been associated with the development of diabetes, seems to be cytokine sensitive.


Proceedings of the National Academy of Sciences of the United States of America | 2014

CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients

Tina Fløyel; Caroline Brorsson; Lotte B. Nielsen; Michela Miani; Claus Heiner Bang-Berthelsen; Martin Friedrichsen; Anne Julie Overgaard; Lukas Adrian Berchtold; Anna Wiberg; Pernille Poulsen; Lars Kai Hansen; Silke Rosinger; Bernhard O. Boehm; Ramesh Ram; Quang Nguyen; Munish Mehta; Grant Morahan; Patrick Concannon; Regine Bergholdt; Jens Høiriis Nielsen; Thomas Reinheckel; Matthias von Herrath; Allan Vaag; Decio L. Eizirik; Henrik B. Mortensen; Joachim Størling; Flemming Pociot

Significance In type 1 diabetes (T1D), the insulin-producing pancreatic β-cells are destroyed by the immune system. Both genetic and environmental factors contribute to T1D risk. Candidate genes for T1D identified by genome-wide association studies have been proposed to act at both the immune system and the β-cell levels. This study shows that the risk variant rs3825932 in the candidate gene cathepsin H (CTSH) predicts β-cell function in both model systems and human T1D. Collectively, our data indicate that higher CTSH expression in β-cells may protect against immune-mediated damage and preserve β-cell function, thereby representing a possible therapeutic target. Our study reinforces the concept that candidate genes for T1D may affect disease progression by modulating survival and function of the β-cells. Over 40 susceptibility loci have been identified for type 1 diabetes (T1D). Little is known about how these variants modify disease risk and progression. Here, we combined in vitro and in vivo experiments with clinical studies to determine how genetic variation of the candidate gene cathepsin H (CTSH) affects disease mechanisms and progression in T1D. The T allele of rs3825932 was associated with lower CTSH expression in human lymphoblastoid cell lines and pancreatic tissue. Proinflammatory cytokines decreased the expression of CTSH in human islets and primary rat β-cells, and overexpression of CTSH protected insulin-secreting cells against cytokine-induced apoptosis. Mechanistic studies indicated that CTSH exerts its antiapoptotic effects through decreased JNK and p38 signaling and reduced expression of the proapoptotic factors Bim, DP5, and c-Myc. CTSH overexpression also up-regulated Ins2 expression and increased insulin secretion. Additionally, islets from Ctsh−/− mice contained less insulin than islets from WT mice. Importantly, the TT genotype was associated with higher daily insulin dose and faster disease progression in newly diagnosed T1D patients, indicating agreement between the experimental and clinical data. In line with these observations, healthy human subjects carrying the T allele have lower β-cell function, which was evaluated by glucose tolerance testing. The data provide strong evidence that CTSH is an important regulator of β-cell function during progression of T1D and reinforce the concept that candidate genes for T1D may affect disease progression by modulating survival and function of pancreatic β-cells, the target cells of the autoimmune assault.


BMC Genomics | 2011

Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes

Claus Heiner Bang-Berthelsen; Lykke Pedersen; Tina Fløyel; Peter H. Hagedorn; Titus Gylvin; Flemming Pociot

BackgroundSeveral approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes.ResultsMicrorray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708) with differential expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs) correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining >97% of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY).ConclusionsIn this study, ICA was applied as an attempt to separate the various factors that influence the mRNA expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes.


Diabetes-metabolism Research and Reviews | 2016

MicroRNAs as regulators of beta-cell function and dysfunction.

Mirwais Osmai; Yama Osmai; Claus Heiner Bang-Berthelsen; Emil Marek Heymans Pallesen; Anna L. Vestergaard; Guy Wayne Novotny; Flemming Pociot; Thomas Mandrup-Poulsen

In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta‐cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta‐cell, and there is proof of principle that miRNA antagonists, so‐called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell‐to‐cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta‐cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta‐cell function and viability in health and disease. Copyright


Genomics | 2014

Temporal profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and network inference.

Miguel Lopes; Burak Kutlu; Michela Miani; Claus Heiner Bang-Berthelsen; Joachim Størling; Flemming Pociot; Nathan Goodman; Lee Hood; Nils Welsh; Gianluca Bontempi; Decio L. Eizirik

Type 1 Diabetes (T1D) is an autoimmune disease where local release of cytokines such as IL-1β and IFN-γ contributes to β-cell apoptosis. To identify relevant genes regulating this process we performed a meta-analysis of 8 datasets of β-cell gene expression after exposure to IL-1β and IFN-γ. Two of these datasets are novel and contain time-series expressions in human islet cells and rat INS-1E cells. Genes were ranked according to their differential expression within and after 24 h from exposure, and characterized by function and prior knowledge in the literature. A regulatory network was then inferred from the human time expression datasets, using a time-series extension of a network inference method. The two most differentially expressed genes previously unknown in T1D literature (RIPK2 and ELF3) were found to modulate cytokine-induced apoptosis. The inferred regulatory network is thus supported by the experimental validation, providing a proof-of-concept for the proposed statistical inference approach.

Collaboration


Dive into the Claus Heiner Bang-Berthelsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge