Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claus Lamm is active.

Publication


Featured researches published by Claus Lamm.


NeuroImage | 2011

Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain

Claus Lamm; Jean Decety; Tania Singer

A growing body of evidence suggests that empathy for pain is underpinned by neural structures that are also involved in the direct experience of pain. In order to assess the consistency of this finding, an image-based meta-analysis of nine independent functional magnetic resonance imaging (fMRI) investigations and a coordinate-based meta-analysis of 32 studies that had investigated empathy for pain using fMRI were conducted. The results indicate that a core network consisting of bilateral anterior insular cortex and medial/anterior cingulate cortex is associated with empathy for pain. Activation in these areas overlaps with activation during directly experienced pain, and we link their involvement to representing global feeling states and the guidance of adaptive behavior for both self- and other-related experiences. Moreover, the image-based analysis demonstrates that depending on the type of experimental paradigm this core network was co-activated with distinct brain regions: While viewing pictures of body parts in painful situations recruited areas underpinning action understanding (inferior parietal/ventral premotor cortices) to a stronger extent, eliciting empathy by means of abstract visual information about the others affective state more strongly engaged areas associated with inferring and representing mental states of self and other (precuneus, ventral medial prefrontal cortex, superior temporal cortex, and temporo-parietal junction). In addition, only the picture-based paradigms activated somatosensory areas, indicating that previous discrepancies concerning somatosensory activity during empathy for pain might have resulted from differences in experimental paradigms. We conclude that social neuroscience paradigms provide reliable and accurate insights into complex social phenomena such as empathy and that meta-analyses of previous studies are a valuable tool in this endeavor.


Annals of the New York Academy of Sciences | 2009

The social neuroscience of empathy

Tania Singer; Claus Lamm

The phenomenon of empathy entails the ability to share the affective experiences of others. In recent years social neuroscience made considerable progress in revealing the mechanisms that enable a person to feel what another is feeling. The present review provides an in‐depth and critical discussion of these findings. Consistent evidence shows that sharing the emotions of others is associated with activation in neural structures that are also active during the first‐hand experience of that emotion. Part of the neural activation shared between self‐ and other‐related experiences seems to be rather automatically activated. However, recent studies also show that empathy is a highly flexible phenomenon, and that vicarious responses are malleable with respect to a number of factors—such as contextual appraisal, the interpersonal relationship between empathizer and other, or the perspective adopted during observation of the other. Future investigations are needed to provide more detailed insights into these factors and their neural underpinnings. Questions such as whether individual differences in empathy can be explained by stable personality traits, whether we can train ourselves to be more empathic, and how empathy relates to prosocial behavior are of utmost relevance for both science and society.


The Neuroscientist | 2007

The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition

Jean Decety; Claus Lamm

Accumulating evidence from cognitive neuroscience indicates that the right inferior parietal cortex, at the junction with the posterior temporal cortex, plays a critical role in various aspects of social cognition such as theory of mind and empathy. With a quantitative meta-analysis of 70 functional neuroimaging studies, the authors demonstrate that this area is also engaged in lower-level (bottom-up) computational processes associated with the sense of agency and reorienting attention to salient stimuli. It is argued that this domain-general computational mechanism is crucial for higher level social cognitive processing. NEUROSCIENTIST 13(6): 580—593, 2007. DOI: 10.1177/1073858407304654


The Scientific World Journal | 2006

Human Empathy Through the Lens of Social Neuroscience

Jean Decety; Claus Lamm

Empathy is the ability to experience and understand what others feel without confusion between oneself and others. Knowing what someone else is feeling plays a fundamental role in interpersonal interactions. In this paper, we articulate evidence from social psychology and cognitive neuroscience, and argue that empathy involves both emotion sharing (bottom-up information processing) and executive control to regulate and modulate this experience (top-down information processing), underpinned by specific and interacting neural systems. Furthermore, awareness of a distinction between the experiences of the self and others constitutes a crucial aspect of empathy. We discuss data from recent behavioral and functional neuroimaging studies with an emphasis on the perception of pain in others, and highlight the role of different neural mechanisms that underpin the experience of empathy, including emotion sharing, perspective taking, and emotion regulation.


Brain Structure & Function | 2010

The role of anterior insular cortex in social emotions

Claus Lamm; Tania Singer

Functional neuroimaging investigations in the fields of social neuroscience and neuroeconomics indicate that the anterior insular cortex (AI) is consistently involved in empathy, compassion, and interpersonal phenomena such as fairness and cooperation. These findings suggest that AI plays an important role in social emotions, hereby defined as affective states that arise when we interact with other people and that depend on the social context. After we link the role of AI in social emotions to interoceptive awareness and the representation of current global emotional states, we will present a model suggesting that AI is not only involved in representing current states, but also in predicting emotional states relevant to the self and others. This model also proposes that AI enables us to learn about emotional states as well as about the uncertainty attached to events, and implies that AI plays a dominant role in decision making in complex and uncertain environments. Our review further highlights that dorsal and ventro-central, as well as anterior and posterior subdivisions of AI potentially subserve different functions and guide different aspects of behavioral regulation. We conclude with a section summarizing different routes to understanding other people’s actions, feelings and thoughts, emphasizing the notion that the predominant role of AI involves understanding others’ feeling and bodily states rather than their action intentions or abstract beliefs.


PLOS ONE | 2007

What Are You Feeling? Using Functional Magnetic Resonance Imaging to Assess the Modulation of Sensory and Affective Responses during Empathy for Pain

Claus Lamm; Howard C. Nusbaum; Andrew N. Meltzoff; Jean Decety

Background Recent neuroscientific evidence suggests that empathy for pain activates similar neural representations as the first-hand experience of pain. However, empathy is not an all-or-none phenomenon but it is strongly malleable by interpersonal, intrapersonal and situational factors. This study investigated how two different top-down mechanisms – attention and cognitive appraisal - affect the perception of pain in others and its neural underpinnings. Methodology/Principal Findings We performed one behavioral (N = 23) and two functional magnetic resonance imaging (fMRI) experiments (N = 18). In the first fMRI experiment, participants watched photographs displaying painful needle injections, and were asked to evaluate either the sensory or the affective consequences of these injections. The role of cognitive appraisal was examined in a second fMRI experiment in which participants watched injections that only appeared to be painful as they were performed on an anesthetized hand. Perceiving pain in others activated the affective-motivational and sensory-discriminative aspects of the pain matrix. Activity in the somatosensory areas was specifically enhanced when participants evaluated the sensory consequences of pain. Perceiving non-painful injections into the anesthetized hand also led to signal increase in large parts of the pain matrix, suggesting an automatic affective response to the putatively harmful stimulus. This automatic response was modulated by areas involved in self/other distinction and valence attribution – including the temporo-parietal junction and medial orbitofrontal cortex. Conclusions/Significance Our findings elucidate how top-down control mechanisms and automatic bottom-up processes interact to generate and modulate other-oriented responses. They stress the role of cognitive processing in empathy, and shed light on how emotional and bodily awareness enable us to evaluate the sensory and affective states of others.


Journal of Cognitive Neuroscience | 2010

How do we empathize with someone who is not like us? a functional magnetic resonance imaging study

Claus Lamm; Andrew N. Meltzoff; Jean Decety

Previous research on the neural underpinnings of empathy has been limited to affective situations experienced in a similar way by an observer and a target individual. In daily life we also interact with people whose responses to affective stimuli can be very different from our own. How do we understand the affective states of these individuals? We used functional magnetic resonance imaging to assess how participants empathize with the feelings of patients who reacted with no pain to surgical procedures but with pain to a soft touch. Empathy for pain of these patients activated the same areas (insula, medial/anterior cingulate cortex) as empathy for persons who responded to painful stimuli in the same way as the observer. Empathy in a situation that was aversive only for the observer but neutral for the patient recruited areas involved in self–other distinction (dorsomedial prefrontal cortex) and cognitive control (right inferior frontal cortex). In addition, effective connectivity between the latter and areas implicated in affective processing was enhanced. This suggests that inferring the affective state of someone who is not like us can rely upon the same neural structures as empathy for someone who is similar to us. When strong emotional response tendencies exist though, these tendencies have to be overcome by executive functions. Our results demonstrate that the fronto-cortical attention network is crucially involved in this process, corroborating that empathy is a flexible phenomenon which involves both automatic and controlled cognitive mechanisms. Our findings have important implications for the understanding and promotion of empathy, demonstrating that regulation of ones egocentric perspective is crucial for understanding others.


The Journal of Neuroscience | 2013

Right Supramarginal Gyrus Is Crucial to Overcome Emotional Egocentricity Bias in Social Judgments

Giorgia Silani; Claus Lamm; Christian C. Ruff; Tania Singer

Humans tend to use the self as a reference point to perceive the world and gain information about other peoples mental states. However, applying such a self-referential projection mechanism in situations where it is inappropriate can result in egocentrically biased judgments. To assess egocentricity bias in the emotional domain (EEB), we developed a novel visuo-tactile paradigm assessing the degree to which empathic judgments are biased by ones own emotions if they are incongruent to those of the person we empathize with. A first behavioral experiment confirmed the existence of such EEB, and two independent fMRI experiments revealed that overcoming biased empathic judgments is associated with increased activation in the right supramarginal gyrus (rSMG), in a location distinct from activations in right temporoparietal junction reported in previous social cognition studies. Using temporary disruption of rSMG with repetitive transcranial magnetic stimulation resulted in a substantial increase of EEB, and so did reducing visuo-tactile stimulation time as shown in an additional behavioral experiment. Our findings provide converging evidence from multiple methods and experiments that rSMG is crucial for overcoming emotional egocentricity. Effective connectivity analyses suggest that this may be achieved by early perceptual regulation processes disambiguating proprioceptive first-person information (touch) from exteroceptive third-person information (vision) during incongruency between self- and other-related affective states. Our study extends previous models of social cognition. It shows that although shared neural networks may underlie emotional understanding in some situations, an additional mechanism subserved by rSMG is needed to avoid biased social judgments in other situations.


NeuroImage | 2001

Evidence for Premotor Cortex Activity during Dynamic Visuospatial Imagery from Single-Trial Functional Magnetic Resonance Imaging and Event-Related Slow Cortical Potentials

Claus Lamm; Christian Windischberger; Ulrich Leodolter; Ewald Moser; Herbert Bauer

A strong correspondence has been repeatedly observed between actually performed and mentally imagined object rotation. This suggests an overlap in the brain regions involved in these processes. Functional neuroimaging studies have consistently revealed parietal and occipital cortex activity during dynamic visuospatial imagery. However, results concerning the involvement of higher-order cortical motor areas have been less consistent. We investigated if and when premotor structures are active during processing of a three-dimensional cube comparison task that requires dynamic visuospatial imagery. In order to achieve a good temporal and spatial resolution, single-trial functional magnetic resonance imaging (fMRI) and scalp-recorded event-related slow cortical potentials (SCPs) were recorded from the same subjects in two separate measurement sessions. In order to reduce inter-subject variability in brain activity due to individual differences, only male subjects (n = 13) with high task-specific ability were investigated. Functional MRI revealed consistent bilateral activity in the occipital (Brodmann area BA18/19) and parietal cortex (BA7), in lateral and medial premotor areas (BA6), the dorsolateral prefrontal cortex (BA9), and the anterior insular cortex. The time-course of SCPs indicated that task-related activity in these areas commenced approximately 550-650 ms after stimulus presentation and persisted until task completion. These results provide strong and consistent evidence that the human premotor cortex is involved in dynamic visuospatial imagery.


Emotion | 2012

The role of emotions for moral judgments depends on the type of emotion and moral scenario

Giuseppe Ugazio; Claus Lamm; Tania Singer

Emotions seem to play a critical role in moral judgment. However, the way in which emotions exert their influence on moral judgments is still poorly understood. This study proposes a novel theoretical approach suggesting that emotions influence moral judgments based on their motivational dimension. We tested the effects of two types of induced emotions with equal valence but with different motivational implications (anger and disgust), and four types of moral scenarios (disgust-related, impersonal, personal, and beliefs) on moral judgments. We hypothesized and found that approach motivation associated with anger would make moral judgments more permissible, while disgust, associated with withdrawal motivation, would make them less permissible. Moreover, these effects varied as a function of the type of scenario: the induced emotions only affected moral judgments concerning impersonal and personal scenarios, while we observed no effects for the other scenarios. These findings suggest that emotions can play an important role in moral judgment, but that their specific effects depend upon the type of emotion induced. Furthermore, induced emotion effects were more prevalent for moral decisions in personal and impersonal scenarios, possibly because these require the performance of an action rather than making an abstract judgment. We conclude that the effects of induced emotions on moral judgments can be predicted by taking their motivational dimension into account. This finding has important implications for moral psychology, as it points toward a previously overlooked mechanism linking emotions to moral judgments.

Collaboration


Dive into the Claus Lamm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewald Moser

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgia Silani

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Uta Sailer

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan Hummer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge