Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clayton E. Cressler is active.

Publication


Featured researches published by Clayton E. Cressler.


Parasitology | 2016

The adaptive evolution of virulence: a review of theoretical predictions and empirical tests

Clayton E. Cressler; David V. McLeod; Carly Rozins; Josée Van Den Hoogen; Troy Day

SUMMARY Why is it that some parasites cause high levels of host damage (i.e. virulence) whereas others are relatively benign? There are now numerous reviews of virulence evolution in the literature but it is nevertheless still difficult to find a comprehensive treatment of the theory and data on the subject that is easily accessible to non-specialists. Here we attempt to do so by distilling the vast theoretical literature on the topic into a set of relatively few robust predictions. We then provide a comprehensive assessment of the available empirical literature that tests these predictions. Our results show that there have been some notable successes in integrating theory and data but also that theory and empiricism in this field do not ‘speak’ to each other very well. We offer a few suggestions for how the connection between the two might be improved.


Ecology Letters | 2014

Disentangling the interaction among host resources, the immune system and pathogens

Clayton E. Cressler; William A. Nelson; Troy Day; Edward McCauley

The interaction between the immune system and pathogens is often characterised as a predator–prey interaction. This characterisation ignores the fact that both require host resources to reproduce. Here, we propose novel theory that considers how these resource requirements can modify the interaction between the immune system and pathogens. We derive a series of models to describe the energetic interaction between the immune system and pathogens, from fully independent resources to direct competition for the same resource. We show that increasing within-host resource supply has qualitatively distinct effects under these different scenarios. In particular, we show the conditions for which pathogen load is expected to increase, decrease or even peak at intermediate resource supply. We survey the empirical literature and find evidence for all three patterns. These patterns are not explained by previous theory, suggesting that competition for host resources can have a strong influence on the outcome of disease.


The American Naturalist | 2010

Interactions between Behavioral and Life‐History Trade‐Offs in the Evolution of Integrated Predator‐Defense Plasticity

Clayton E. Cressler; Aaron A. King; Earl E. Werner

Inducible defense, which is phenotypic plasticity in traits that affect predation risk, is taxonomically widespread and has been shown to have important ecological consequences. However, it remains unclear what factors promote the evolution of qualitatively different defense strategies and when evolution should favor strategies that involve modification of multiple traits. Previous theory suggests that individual‐level trade‐offs play a key role in defense evolution, but most of this work has assumed that trade‐offs are independent. Here we show that the shape of the behavioral trade‐off between foraging gain and predation risk determines the interaction between this trade‐off and the life‐history trade‐off between growth and reproduction. The interaction between these fundamental trade‐offs determines the optimal investment into behavioral and life‐history defenses. Highly nonlinear foraging–predation risk trade‐offs favor the evolution of behavioral defenses, while linear trade‐offs favor life‐history defenses. Between these extremes, integrated defense responses are optimal, with defense expression strongly depending on ontogeny. We suggest that these predictions may be general across qualitatively different defenses. Our results have important implications for theory on the ecological effects of inducible defense, which has not considered how qualitatively different defenses might alter ecological interactions.


Systematic Biology | 2015

Detecting Adaptive Evolution in Phylogenetic Comparative Analysis Using the Ornstein–Uhlenbeck Model

Clayton E. Cressler; Marguerite A. Butler; Aaron A. King

Phylogenetic comparative analysis is an approach to inferring evolutionary process from a combination of phylogenetic and phenotypic data. The last few years have seen increasingly sophisticated models employed in the evaluation of more and more detailed evolutionary hypotheses, including adaptive hypotheses with multiple selective optima and hypotheses with rate variation within and across lineages. The statistical performance of these sophisticated models has received relatively little systematic attention, however. We conducted an extensive simulation study to quantify the statistical properties of a class of models toward the simpler end of the spectrum that model phenotypic evolution using Ornstein-Uhlenbeck processes. We focused on identifying where, how, and why these methods break down so that users can apply them with greater understanding of their strengths and weaknesses. Our analysis identifies three key determinants of performance: a discriminability ratio, a signal-to-noise ratio, and the number of taxa sampled. Interestingly, we find that model-selection power can be high even in regions that were previously thought to be difficult, such as when tree size is small. On the other hand, we find that model parameters are in many circumstances difficult to estimate accurately, indicating a relative paucity of information in the data relative to these parameters. Nevertheless, we note that accurate model selection is often possible when parameters are only weakly identified. Our results have implications for more sophisticated methods inasmuch as the latter are generalizations of the case we study.


Proceedings of the Royal Society of London B: Biological Sciences | 2015

Evolution of hosts paying manifold costs of defence.

Clayton E. Cressler; Andrea L. Graham; Troy Day

Hosts are expected to incur several physiological costs in defending against parasites. These include constitutive energetic (or other resource) costs of a defence system, facultative resource costs of deploying defences when parasites strike, and immunopathological costs of collateral damage. Here, we investigate the evolution of host recovery rates, varying the source and magnitude of immune costs. In line with previous work, we find that hosts paying facultative resource costs evolve faster recovery rates than hosts paying constitutive costs. However, recovery rate is more sensitive to changes in facultative costs, potentially explaining why constitutive costs are hard to detect empirically. Moreover, we find that immunopathology costs which increase with recovery rate can erode the benefits of defence, promoting chronicity of infection. Immunopathology can also lead to hosts evolving low recovery rate in response to virulent parasites. Furthermore, when immunopathology reduces fecundity as recovery rate increases (e.g. as for T-cell responses to urogenital chlamydiosis), then recovery and reproductive rates do not covary as predicted in eco-immunology. These results suggest that immunopathological and resource costs have qualitatively different effects on host evolution and that embracing the complexity of immune costs may be essential for explaining variability in immune defence in nature.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Starvation reveals the cause of infection- induced castration and gigantism

Clayton E. Cressler; William A. Nelson; Troy Day; Edward McCauley

Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna–Pasteuria ramosa host–parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems.


Philosophical Transactions of the Royal Society B | 2018

Resource-driven changes to host population stability alter the evolution of virulence and transmission

Jessica L. Hite; Clayton E. Cressler

What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a ‘non-nested’ model. Then, we consider a ‘nested’ model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to ‘non-nested’ model predictions, the ‘nested’ model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’.


Frontiers in Immunology | 2018

Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation.

Sarah A. Budischak; Christina Hansen; Quentin Caudron; Romain Garnier; Tyler R. Kartzinel; István Pelczer; Clayton E. Cressler; Anieke van Leeuwen; Andrea L. Graham

Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs.


The American Naturalist | 2017

Unexpected Nongenetic Individual Heterogeneity and Trait Covariance in Daphnia and Its Consequences for Ecological and Evolutionary Dynamics

Clayton E. Cressler; Stefan Bengtson; William A. Nelson

Individual differences in genetics, age, or environment can cause tremendous differences in individual life-history traits. This individual heterogeneity generates demographic heterogeneity at the population level, which is predicted to have a strong impact on both ecological and evolutionary dynamics. However, we know surprisingly little about the sources of individual heterogeneity for particular taxa or how different sources scale up to impact ecological and evolutionary dynamics. Here we experimentally study the individual heterogeneity that emerges from both genetic and nongenetic sources in a species of freshwater zooplankton across a large gradient of food quality. Despite the tight control of environment, we still find that the variation from nongenetic sources is greater than that from genetic sources over a wide range of food quality and that this variation has strong positive covariance between growth and reproduction. We evaluate the general consequences of genetic and nongenetic covariance for ecological and evolutionary dynamics theoretically and find that increasing nongenetic variation slows evolution independent of the correlation in heritable life-history traits but that the impact on ecological dynamics depends on both nongenetic and genetic covariance. Our results demonstrate that variation in the relative magnitude of nongenetic versus genetic sources of variation impacts the predicted ecological and evolutionary dynamics.


bioRxiv | 2018

Parasite-mediated anorexia increases or decreases virulence evolution, depending on dietary context

Jessica L. Hite; Clayton E. Cressler

Parasite-mediated anorexia is a ubiquitous, but poorly understood component of host-parasite interactions. These temporary but substantial reductions in food intake (range: 4-100%) limit exposure to parasites and alter within-host physiological processes that regulate parasite development, production, and survival, such as energy allocation, immune function, host-microbiota interactions, and gastrointestinal conditions. By altering the duration, severity, and spread of infection, anorexia could substantially alter ecological, evolutionary, and epidemiological dynamics. However, these higher-order implications are typically overlooked and remain poorly understood — even though medical (e.g., non-steroidal anti-inflammatory drugs, vaccines, targeted signaling pathways, calorie restriction) and husbandry practices (e.g., antibiotic and diet use for rapid growth, nutrient supplementation) often directly or indirectly alter host appetite and nutrient intake. Here, we develop theory that helps elucidate why reduced food intake (anorexia) can enhance or diminish disease severity and illustrates that the population-level outcomes often contrast with the individual-level outcomes: treatments that increase the intake of high quality nutrients (suppressing anorexia), can drive rapid individual-level recovery, but inadvertently increase infection prevalence and select for more virulent parasites. Such a theory-guided approach offers a tool to improve targeting host nutrition to manage disease in both human and livestock populations by revealing a means to predict how nutrient-driven feedbacks will affect both the host and parasite.

Collaboration


Dive into the Clayton E. Cressler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica L. Hite

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Hurford

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Ellison

Aberystwyth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge