Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clemens F. Schaber is active.

Publication


Featured researches published by Clemens F. Schaber.


Advanced Materials | 2014

Air/Water Interfacial Formation of Freestanding, Stimuli‐Responsive, Self‐Healing Catecholamine Janus‐Faced Microfilms

Seonki Hong; Clemens F. Schaber; Kirstin Dening; Esther Appel; Stanislav N. Gorb; Haeshin Lee

A catecholamine freestanding film is discovered to be spontaneously formed at the air-water interface, and the film has unique properties of robust surface adhesiveness, self-healing, and stimuli-responsive properties. The interfacial film-producing procedure is a simple single step containing polyamines and catechol(amine)s. It is found that oxygen-rich regions existing at an air-water interface greatly accelerate the catecholamine crosslinking reaction.


Journal of the Royal Society Interface | 2007

Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys)

Michael E. McConney; Clemens F. Schaber; Michael D. Julian; Friedrich G. Barth; Vladimir V. Tsukruk

Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curves obtained indicate the presence of a soft, liquid-like epicuticular layer (20–40 nm thick) above the pad material, which has much higher stiffness. The Young modulus of the pad material is close to 15 MPa at low frequencies, but increases rapidly with increasing frequencies approximately above 30 Hz to approximately 70 MPa at 112 Hz. The adhesive forces drop sharply by about 40% in the same frequency range. The strong frequency dependence of the elastic modulus indicates the viscoelastic nature of the pad material, its glass transition temperature being close to room temperature (25±2 °C) and, therefore, to its maximized energy absorption from low-frequency mechanical stimuli. These viscoelastic properties of the cuticular pad are suggested to be at least partly responsible for the high-pass characteristics of the vibration sensors physiological properties demonstrated earlier.


Journal of the Royal Society Interface | 2009

Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei )

Michael E. McConney; Clemens F. Schaber; Michael D. Julian; William C. Eberhardt; Joseph A. C. Humphrey; Friedrich G. Barth; Vladimir V. Tsukruk

The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities (rad s−1) for hairs 900–950 μm long prior to shortening for measurement purposes. In the range of angular velocities examined (4×10−4−2.6×10−1 rad s−1), the torque T (Nm) resisting hair motion and its time rate of change (Nm s−1) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S 3p=2.91×10−11 Nm rad−1 and =2.77×10−11 Nm rad−1 and the damping parameter R 3p=1.46×10−12 Nm s rad−1. For angular velocities larger than 0.05 rad s−1, which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S 2p=4.89×10−11 Nm rad−1 and R 2p=2.83×10−14 Nm s rad−1 for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2009

In search of differences between the two types of sensory cells innervating spider slit sensilla (Cupiennius salei Keys.)

Jorge Molina; Clemens F. Schaber; Friedrich G. Barth

The metatarsal lyriform organ of the spider Cupiennius salei is a vibration detector consisting of 21 cuticular slits supplied by two sensory cells each, one ending in the outer and the other at the inner slit membrane. In search of functional differences between the two cell types due to differences in stimulus transmission, we analyzed (1) the adaptation of responses to electrical stimulation, (2) the thresholds for mechanical stimulation and (3) the representation of male courtship vibrations using intracellular recording and staining techniques. Single- and multi-spiking receptor neurons were found among both cell types, which showed high-pass filter characteristics. Below 100-Hz threshold, tarsal deflections were between 1° and 10°. At higher frequencies, they decreased down to values as small as 0.05°, corresponding to 4.5-nm tarsal deflection in the most sensitive cases. Different slits in the organ and receptor cells with slow or fast adaptation did not differ in this regard. When stimulated with male courtship vibrations, both types of receptor cells again did not differ significantly regarding number of action potentials, latency and synchronization coefficients. Surprisingly, the differences in dendrite coupling were not reflected by the physiological responses of the two cell types innervating the slits.


The Journal of Experimental Biology | 2014

Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails

Jonas O. Wolff; Axel L. Schönhofer; Clemens F. Schaber; Stanislav N. Gorb

Gluing can be a highly efficient mechanism of prey capture, as it should require less complex sensory–muscular feedback. Whereas it is well known in insects, this mechanism is much less studied in arachnids, except spiders. Soil-dwelling harvestmen (Opiliones, Nemastomatidae) bear drumstick-like glandular hairs (clavate setae) at their pedipalps, which were previously hypothesized to be sticky and used in prey capture. However, clear evidence for this was lacking to date. Using high-speed videography, we found that the harvestman Mitostoma chrysomelas was able to capture fast-moving springtails (Collembola) just by a slight touch of the pedipalp. Adhesion of single clavate setae increased proportionally with pull-off velocity, from 1 μN at 1 μm s−1 up to 7 μN at 1 mm s−1, which corresponds to the typical weight of springtails. Stretched glue droplets exhibited characteristics of a viscoelastic fluid forming beads-on-a-string morphology over time, similar to spider capture threads and the sticky tentacles of carnivorous plants. These analogies indicate that viscoelasticity is a highly efficient mechanism for prey capture, as it holds stronger the faster the struggling prey moves. Cryo-scanning electron microscopy of snap-frozen harvestmen with glued springtails revealed that the gluey secretions have a high affinity to wet the microstructured cuticle of collembolans, which was previously reported to be barely wettable for both polar and non-polar liquids. Glue droplets can be contaminated with the detached scaly setae of collembolans, which may represent a counter-adaptation against entrapment by the glue, similar to the scaly surfaces of Lepidoptera and Trichoptera (Insecta) facilitating escape from spider webs.


Interface Focus | 2015

Modelling clustering of vertically aligned carbon nanotube arrays.

Clemens F. Schaber; Alexander E. Filippov; Thorsten Heinlein; Jörg J. Schneider; Stanislav N. Gorb

Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.


Royal Society Open Science | 2016

Influence of the porosity on the photoresponse of a liquid crystal elastomer

Emre Kizilkan; Xin Jin; Clemens F. Schaber; Rainer Adelung; Anne Staubitz; Stanislav N. Gorb

Azobenzene containing liquid crystal elastomers (LCEs) are among of the most prominent photoresponsive polymers due to their fast and reversible response to different light stimuli. To bring new functions into the present framework, novel modifications in bulk material morphology are required. Therefore, we produced azobenzene LCE free-standing films with different porosities. While the porosity provided macroscopic morphological changes, at the same time, it induced modifications in alignment of liquid crystal azobenzene units in the films. We found that a high porosity increased the photoresponse of the LCE in terms of bending angle with high significance. Moreover, the porous LCE films showed similar bending forces to those of pore-free LCE films.


Journal of Morphology | 2016

Push or Pull? The light-weight architecture of the Daphnia pulex carapace is adapted to withstand tension, not compression.

Sebastian Kruppert; Martin Horstmann; Linda C. Weiss; Clemens F. Schaber; Stanislav N. Gorb; Ralph Tollrian

Daphnia (Crustacea, Cladocera) are well known for their ability to form morphological adaptations to defend against predators. In addition to spines and helmets, the carapace itself is a protective structure encapsulating the main body, but not the head. It is formed by a double layer of the integument interconnected by small pillars and hemolymphatic space in between. A second function of the carapace is respiration, which is performed through its proximal integument. The interconnecting pillars were previously described as providing higher mechanical stability against compressive forces. Following this hypothesis, we analyzed the carapace structure of D. pulex using histochemistry in combination with light and electron microscopy. We found the distal integument of the carapace to be significantly thicker than the proximal. The pillars appear fibrous with slim waists and broad, sometimes branched bases where they meet the integument layers. The fibrous structure and the slim‐waisted shape of the pillars indicate a high capacity for withstanding tensile rather than compressive forces. In conclusion they are more ligaments than pillars. Therefore, we measured the hemolymphatic gauge pressure in D. longicephala and indeed found the hemocoel to have a pressure above ambient. Our results offer a new mechanistic explanation of the high rigidity of the daphniid carapace, which is probably the result of a light‐weight construction consisting of two integuments bound together by ligaments and inflated by a hydrostatic hyper‐pressure in the hemocoel. J. Morphol. 277:1320–1328, 2016.


Journal of Materials Chemistry B | 2016

Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria

I. Malek; Clemens F. Schaber; Thorsten Heinlein; Jörg J. Schneider; Stanislav N. Gorb; Ruth A. Schmitz

A significant part of human infections is frequently associated with the establishment of biofilms by (opportunistic) pathogens. Due to the increasing number of untreatable biofilms, there is a rising need to develop novel and effective strategies to prevent biofilm formation on surfaces in medical as well as in technical areas. Bacterial initial attachment and adhesion to surfaces followed by biofilm formation is highly influenced by the physical properties of the surfaces. Consequently, changing these properties or applying different nanostructures is an attractive approach to prevent biofilm formation. Here we report on the effect(s) of surface grown and anchored vertically aligned multi walled carbon nanotubes (MWCNT), which have been made wettable by immersion through a graded ethanol series, on biofilm formation of Klebsiella oxytoca, Pseudomonas aeruginosa, and Staphylococcus epidermidis. We evaluated the biofilm formation under continuous flow conditions by confocal laser scanning microscopy and scanning electron microscopy, and demonstrated significant inhibition of biofilm formation of all the different pathogens by MWCNT of different lengths. Furthermore, the anti-adhesive effects of the MWCNT increased with their overall length. The application potential of our findings on surface grown and anchored vertically aligned MWCNT may represent a suitable contact mechanics based approach to prevent biofilm formation on medical devices or technical sensors operating in fluid environments.


Scientific Reports | 2017

Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia

Sebastian Kruppert; Martin Horstmann; Linda C. Weiss; Ulrich Witzel; Clemens F. Schaber; Stanislav N. Gorb; Ralph Tollrian

The freshwater crustacean Daphnia is known for its ability to develop inducible morphological defences that thwart predators. These defences are developed only in the presence of predators and are realized as morphological shape alterations e.g. ‘neckteeth’ in D. pulex and ‘crests’ in D. longicephala. Both are discussed to hamper capture, handling or consumption by interfering with the predator’s prey capture devices. Additionally, D. pulex and some other daphniids were found to armour-up and develop structural alterations resulting in increased carapace stiffness. We used scanning transmission electron microscopy (STEM) and confocal laser scanning microscopy (CLSM) to identify predator-induced structural and shape alterations. We found species specific structural changes accompanying the known shape alterations. The cuticle becomes highly laminated (i.e. an increased number of layers) in both species during predator exposure. Using nano- and micro-indentation as well as finite element analysis (FEA) we determined both: the structure’s and shape’s contribution to the carapace’s mechanical resistance. From our results we conclude that only structural alterations are responsible for increased carapace stiffness, whereas shape alterations appear to pose handling difficulties during prey capture. Therefore, these defences act independently at different stages during predation.

Collaboration


Dive into the Clemens F. Schaber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg J. Schneider

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Thorsten Heinlein

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Michael E. McConney

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vladimir V. Tsukruk

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge