Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clemens Krepler is active.

Publication


Featured researches published by Clemens Krepler.


Cancer Cell | 2013

Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells

Alexander Roesch; Adina Vultur; Ivan Bogeski; Huan Wang; Katharina M. Zimmermann; David W. Speicher; Christina Körbel; Matthias W. Laschke; Phyllis A. Gimotty; Stephan E. Philipp; Elmar Krause; Sylvie Pätzold; Jessie Villanueva; Clemens Krepler; Mizuho Fukunaga-Kalabis; Markus Hoth; Boris C. Bastian; Thomas Vogt; Meenhard Herlyn

Despite success with BRAFV600E inhibitors, therapeutic responses in patients with metastatic melanoma are short-lived because of the acquisition of drug resistance. We identified a mechanism of intrinsic multidrug resistance based on the survival of a tumor cell subpopulation. Treatment with various drugs, including cisplatin and vemurafenib, uniformly leads to enrichment of slow-cycling, long-term tumor-maintaining melanoma cells expressing the H3K4-demethylase JARID1B/KDM5B/PLU-1. Proteome-profiling revealed an upregulation in enzymes of mitochondrial oxidative-ATP-synthesis (oxidative phosphorylation) in this subpopulation. Inhibition of mitochondrial respiration blocked the emergence of the JARID1B(high) subpopulation and sensitized melanoma cells to therapy, independent of their genotype. Our findings support a two-tiered approach combining anticancer agents that eliminate rapidly proliferating melanoma cells with inhibitors of the drug-resistant slow-cycling subpopulation.


Cell Reports | 2013

Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma

Jessie Villanueva; Jeffrey R. Infante; Clemens Krepler; Patricia Reyes-Uribe; Minu Samanta; Hsin-Yi Chen; Bin Li; Rolf Swoboda; Melissa Wilson; Adina Vultur; Mizuho Fukunaba-Kalabis; Bradley Wubbenhorst; Thomas Y. Chen; Qin Liu; Katrin Sproesser; Douglas J. DeMarini; Tona M. Gilmer; Anne-Marie Martin; Ronen Marmorstein; David C. Schultz; David W. Speicher; Giorgos C. Karakousis; Wei Xu; Ravi K. Amaravadi; Xiaowei Xu; Lynn M. Schuchter; Meenhard Herlyn; Katherine L. Nathanson

Although BRAF and MEK inhibitors have proven clinical benefits in melanoma, most patients develop resistance. We report a de novo MEK2-Q60P mutation and BRAF gain in a melanoma from a patient who progressed on the MEK inhibitor trametinib and did not respond to the BRAF inhibitor dabrafenib. We also identified the same MEK2-Q60P mutation along with BRAF amplification in a xenograft tumor derived from a second melanoma patient resistant to the combination of dabrafenib and trametinib. Melanoma cells chronically exposed to trametinib acquired concurrent MEK2-Q60P mutation and BRAF-V600E amplification, which conferred resistance to MEK and BRAF inhibitors. The resistant cells had sustained MAPK activation and persistent phosphorylation of S6K. A triple combination of dabrafenib, trametinib, and the PI3K/mTOR inhibitor GSK2126458 led to sustained tumor growth inhibition. Hence, concurrent genetic events that sustain MAPK signaling can underlie resistance to both BRAF and MEK inhibitors, requiring novel therapeutic strategies to overcome it.


Nature | 2017

Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance

Sydney Shaffer; Margaret Dunagin; Stefan R. Torborg; Eduardo A. Torre; Benjamin Emert; Clemens Krepler; Marilda Beqiri; Katrin Sproesser; Patricia Brafford; Min Xiao; Elliott Eggan; Ioannis N. Anastopoulos; Cesar A. Vargas-Garcia; Abhyudai Singh; Katherine L. Nathanson; Meenhard Herlyn; Arjun Raj

Therapies that target signalling molecules that are mutated in cancers can often have substantial short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can result from secondary mutations, but in other cases there is no clear genetic cause, raising the possibility of non-genetic rare cell variability. Here we show that human melanoma cells can display profound transcriptional variability at the single-cell level that predicts which cells will ultimately resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of drug then induces epigenetic reprogramming in these cells, converting the transient transcriptional state to a stably resistant state. This reprogramming begins with a loss of SOX10-mediated differentiation followed by activation of new signalling pathways, partially mediated by the activity of the transcription factors JUN and/or AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance and provides a framework for understanding resistance dynamics in single cells. We find that other cell types also exhibit sporadic expression of many of these same marker genes, suggesting the existence of a general program in which expression is displayed in rare subpopulations of cells.


Clinical Cancer Research | 2013

The novel SMAC mimetic Birinapant exhibits potent activity against human melanoma cells

Clemens Krepler; Srinivas K. Chunduru; Molly B. Halloran; Xu He; Min Xiao; Adina Vultur; Jessie Villanueva; Yasuhiro Mitsuuchi; Eric M. Neiman; Christopher A. Benetatos; Katherine L. Nathanson; Ravi K. Amaravadi; Hubert Pehamberger; Mark A. McKinlay; Meenhard Herlyn

Purpose: Inhibitor of apoptosis proteins (IAP) promote cancer cell survival and confer resistance to therapy. We report on the ability of second mitochondria-derived activator of caspases mimetic, birinapant, which acts as antagonist to cIAP1 and cIAP2, to restore the sensitivity to apoptotic stimuli such as TNF-α in melanomas. Experimental Design: Seventeen melanoma cell lines, representing five major genetic subgroups of cutaneous melanoma, were treated with birinapant as a single agent or in combination with TNF-α. Effects on cell viability, target inhibition, and initiation of apoptosis were assessed and findings were validated in 2-dimensional (2D), 3D spheroid, and in vivo xenograft models. Results: When birinapant was combined with TNF-α, strong combination activity, that is, neither compound was effective individually but the combination was highly effective, was observed in 12 of 18 cell lines. This response was conserved in spheroid models, whereas in vivo birinapant inhibited tumor growth without adding TNF-α in in vitro resistant cell lines. Birinapant combined with TNF-α inhibited the growth of a melanoma cell line with acquired resistance to BRAF inhibition to the same extent as in the parental cell line. Conclusions: Birinapant in combination with TNF-α exhibits a strong antimelanoma effect in vitro. Birinapant as a single agent shows in vivo antitumor activity, even if cells are resistant to single agent therapy in vitro. Birinapant in combination with TNF-α is effective in a melanoma cell line with acquired resistance to BRAF inhibitors. Clin Cancer Res; 19(7); 1784–94. ©2013 AACR.


Oncogene | 2014

MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines

Adina Vultur; Jessie Villanueva; Clemens Krepler; Geena Rajan; Quan Chen; Min Xiao; Ling Li; Phyllis A. Gimotty; Melissa Wilson; James Hayden; Frederick Keeney; Katherine L. Nathanson; Meenhard Herlyn

Elevated activity of the mitogen-activated protein kinase (MAPK) signaling cascade is found in the majority of human melanomas and is known to regulate proliferation, survival and invasion. Current targeted therapies focus on decreasing the activity of this pathway; however, we do not fully understand how these therapies impact tumor biology, especially given that melanoma is a heterogeneous disease. Using a three-dimensional (3D), collagen-embedded spheroid melanoma model, we observed that MEK and BRAF inhibitors can increase the invasive potential of ∼20% of human melanoma cell lines. The invasive cell lines displayed increased receptor tyrosine kinase (RTK) activity and activation of the Src/FAK/signal transducers and activators of transcription-3 (STAT3) signaling axis, also associated with increased cell-to-cell adhesion and cadherin engagement following MEK inhibition. Targeting various RTKs, Src, FAK and STAT3 with small molecule inhibitors in combination with a MEK inhibitor prevented the invasive phenotype, but only STAT3 inhibition caused cell death in the 3D context. We further show that STAT3 signaling is induced in BRAF-inhibitor-resistant cells. Our findings suggest that MEK and BRAF inhibitors can induce STAT3 signaling, causing potential adverse effects such as increased invasion. We also provide the rationale for the combined targeting of the MAPK pathway along with inhibitors of RTKs, SRC or STAT3 to counteract STAT3-mediated resistance phenotypes.


Journal of Clinical Investigation | 2016

Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

Gao Zhang; Dennie T. Frederick; Lawrence Wu; Zhi Wei; Clemens Krepler; Satish Srinivasan; Young Chan Chae; Xiaowei Xu; Harry Choi; Elaida Dimwamwa; Omotayo Ope; Batool Shannan; Devraj Basu; Dongmei Zhang; Manti Guha; Min Xiao; Sergio Randell; Katrin Sproesser; Wei Xu; Jephrey Y. Liu; Giorgos C. Karakousis; Lynn M. Schuchter; Tara C. Gangadhar; Ravi K. Amaravadi; Mengnan Gu; Caiyue Xu; Abheek Ghosh; Weiting Xu; Tian Tian; Jie Zhang

Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi.


Clinical Cancer Research | 2016

Personalized Preclinical Trials in BRAF Inhibitor–Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies

Clemens Krepler; Min Xiao; Katrin Sproesser; Patricia Brafford; Batool Shannan; Marilda Beqiri; Qin Liu; Wei Xu; Bradley Garman; Katherine L. Nathanson; Xiaowei Xu; Giorgos C. Karakousis; Gordon B. Mills; Yiling Lu; Tamer A. Ahmed; Poulikos I. Poulikakos; Giordano Caponigro; Markus Boehm; Malte Peters; Lynn M. Schuchter; Ashani T. Weeraratna; Meenhard Herlyn

Purpose: To test second-line personalized medicine combination therapies, based on genomic and proteomic data, in patient-derived xenograft (PDX) models. Experimental Design: We established 12 PDXs from BRAF inhibitor–progressed melanoma patients. Following expansion, PDXs were analyzed using targeted sequencing and reverse-phase protein arrays. By using multi-arm preclinical trial designs, we identified efficacious precision medicine approaches. Results: We identified alterations previously described as drivers of resistance: NRAS mutations in 3 PDXs, MAP2K1 (MEK1) mutations in 2, BRAF amplification in 4, and aberrant PTEN in 7. At the protein level, re-activation of phospho-MAPK predominated, with parallel activation of PI3K in a subset. Second-line efficacy of the pan-PI3K inhibitor BKM120 with either BRAF (encorafenib)/MEK (binimetinib) inhibitor combination or the ERK inhibitor VX-11e was confirmed in vivo. Amplification of MET was observed in 3 PDX models, a higher frequency than expected and a possible novel mechanism of resistance. Importantly, MET amplification alone did not predict sensitivity to the MET inhibitor capmatinib. In contrast, capmatinib as single agent resulted in significant but transient tumor regression in a PDX with resistance to BRAF/MEK combination therapy and high pMET. The triple combination capmatinib/encorafenib/binimetinib resulted in complete and sustained tumor regression in all animals. Conclusions: Genomic and proteomic data integration identifies dual-core pathway inhibition as well as MET as combinatorial targets. These studies provide evidence for biomarker development to appropriately select personalized therapies of patients and avoid treatment failures. Clin Cancer Res; 22(7); 1592–602. ©2015 AACR. See related commentary by Hartsough and Aplin, p. 1550


Oncogene | 2015

A stress-induced early innate response causes multidrug tolerance in melanoma

D. Ravindran Menon; Sajal Kumar Das; Clemens Krepler; Adina Vultur; Beate Rinner; Silvia Schauer; Karl Kashofer; Karin Wagner; Gao Zhang; E. Bonyadi Rad; Nikolas K. Haass; Hp Soyer; Brian Gabrielli; Rajasekharan Somasundaram; Gerald Hoefler; Meenhard Herlyn; Helmut Schaider

Acquired drug resistance constitutes a major challenge for effective cancer therapies with melanoma being no exception. The dynamics leading to permanent resistance are poorly understood but are important to design better treatments. Here we show that drug exposure, hypoxia or nutrient starvation leads to an early innate cell response in melanoma cells resulting in multidrug resistance, termed induced drug-tolerant cells (IDTCs). Transition into the IDTC state seems to be an inherent stress reaction for survival toward unfavorable environmental conditions or drug exposure. The response comprises chromatin remodeling, activation of signaling cascades and markers implicated in cancer stemness with higher angiogenic potential and tumorigenicity. These changes are characterized by a common increase in CD271 expression concomitantly with loss of differentiation markers such as melan-A and tyrosinase, enhanced aldehyde dehydrogenase (ALDH) activity and upregulation of histone demethylases. Accordingly, IDTCs show a loss of H3K4me3, H3K27me3 and gain of H3K9me3 suggesting activation and repression of differential genes. Drug holidays at the IDTC state allow for reversion into parental cells re-sensitizing them to the drug they were primarily exposed to. However, upon continuous drug exposure IDTCs eventually transform into permanent and irreversible drug-resistant cells. Knockdown of CD271 or KDM5B decreases transition into the IDTC state substantially but does not prevent it. Targeting IDTCs would be crucial for sustainable disease management and prevention of acquired drug resistance.


Clinical Cancer Research | 2015

BRAF Inhibition Stimulates Melanoma-Associated Macrophages to Drive Tumor Growth.

Tao Wang; Min Xiao; Yingbin Ge; Clemens Krepler; Eric Belser; Alfonso Lopez-Coral; Xaiowei Xu; Gao Zhang; Rikka Azuma; Qin Liu; Rui Liu; Ling Li; Ravi K. Amaravadi; Wei Xu; Giorgos C. Karakousis; Tara C. Gangadhar; Lynn M. Schuchter; Melissa Lieu; Sanika Khare; Molly B. Halloran; Meenhard Herlyn; Russel E. Kaufman

Purpose: To investigate the roles of melanoma-associated macrophages in melanoma resistance to BRAF inhibitors (BRAFi). Experimental Design: An in vitro macrophage and melanoma cell coculture system was used to investigate whether macrophages play a role in melanoma resistance to BRAFi. The effects of macrophages in tumor resistance were examined by proliferation assay, cell death assay, and Western blot analyses. Furthermore, two mouse preclinical models were used to validate whether targeting macrophages can increase the antitumor activity of BRAFi. Finally, the number of macrophages in melanoma tissues was examined by immunohistochemistry. Results: We demonstrate that in BRAF-mutant melanomas, BRAFi paradoxically activate the mitogen-activated protein kinase (MAPK) pathway in macrophages to produce VEGF, which reactivates the MAPK pathway and stimulates cell growth in melanoma cells. Blocking the MAPK pathway or VEGF signaling then reverses macrophage-mediated resistance. Targeting macrophages increases the antitumor activity of BRAFi in mouse and human tumor models. The presence of macrophages in melanomas predicts early relapse after therapy. Conclusions: Our findings demonstrate that macrophages play a critical role in melanoma resistance to BRAFi, suggesting that targeting macrophages will benefit patients with BRAF-mutant melanoma. Clin Cancer Res; 21(7); 1652–64. ©2015 AACR.


PLOS ONE | 2013

The Anti-Melanoma Activity of Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Is Dependent on p53 Signaling

Brijal Desai; Jessie Villanueva; Thierry-Thien K. Nguyen; Mercedes Lioni; Min Xiao; Jun Kong; Clemens Krepler; Adina Vultur; Keith T. Flaherty; Katherine L. Nathanson; Keiran S.M. Smalley; Meenhard Herlyn

Although cyclin dependent kinase (CDK)-2 is known to be dispensable for the growth of most tumors, it is thought to be important for the proliferation of melanoma cells, where its expression is controlled by the melanocyte-lineage specific transcription factor MITF. Treatment of a panel of melanoma cells with the CDK inhibitor dinaciclib led to a concentration-dependent inhibition of growth under both 2D adherent and 3D organotypic cell culture conditions. Dinaciclib targeted melanoma cell lines regardless of cdk2 or MITF levels. Inhibition of growth was associated with a rapid induction of G2/M cell arrest and apoptosis. Treatment of human melanoma mouse xenografts with dinaciclib led to tumor regression associated with reduced retinoblastoma protein phosphorylation and Bcl-2 expression. Further mechanistic studies revealed that dinaciclib induces p53 expression whilst simultaneously downregulating the expression of the anti-apoptotic factors Mcl-1 and XIAP. To clarify the role of p53 activation in the dinaciclib-induced cell death, we generated melanoma cell lines in which p53 expression was knocked down using a shRNA lentiviral vector. Knockdown of p53 completely abolished the induction of apoptosis seen following dinaciclib treatment as shown by a lack of annexin-V staining and caspase-3 cleavage. Altogether, these data show that dinaciclib induces apoptosis in a large panel of melanoma cell lines through a mechanism requiring p53 expression.

Collaboration


Dive into the Clemens Krepler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Xu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Giorgos C. Karakousis

Hospital of the University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lynn M. Schuchter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge