Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clemens Ruppert is active.

Publication


Featured researches published by Clemens Ruppert.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation

Christian Kannemeier; Aya Shibamiya; Fumie Nakazawa; Heidi Trusheim; Clemens Ruppert; Philipp Markart; Yutong Song; Eleni Tzima; Elisabeth Kennerknecht; Michael Niepmann; Marie Luise Von Bruehl; Daniel Sedding; Steffen Massberg; Andreas Günther; Bernd Engelmann; Klaus T. Preissner

Upon vascular injury, locally controlled haemostasis prevents life-threatening blood loss and ensures wound healing. Intracellular material derived from damaged cells at these sites will become exposed to blood components and could contribute to blood coagulation and pathological thrombus formation. So far, the functional and mechanistic consequences of this concept are not understood. Here, we present in vivo and in vitro evidence that different forms of eukaryotic and prokaryotic RNA serve as promoters of blood coagulation. Extracellular RNA was found to augment (auto-)activation of proteases of the contact phase pathway of blood coagulation such as factors XII and XI, both exhibiting strong RNA binding. Moreover, administration of exogenous RNA provoked a significant procoagulant response in rabbits. In mice that underwent an arterial thrombosis model, extracellular RNA was found associated with fibrin-rich thrombi, and pretreatment with RNase (but not DNase) significantly delayed occlusive thrombus formation. Thus, extracellular RNA derived from damaged or necrotic cells particularly under pathological conditions or severe tissue damage represents the long sought natural “foreign surface” and provides a procoagulant cofactor template for the factors XII/XI-induced contact activation/amplification of blood coagulation. Extracellular RNA thereby reveals a yet unrecognized target for antithrombotic intervention, using RNase or related therapeutic strategies.


American Journal of Respiratory and Critical Care Medicine | 2008

Epithelial Endoplasmic Reticulum Stress and Apoptosis in Sporadic Idiopathic Pulmonary Fibrosis

Martina Korfei; Clemens Ruppert; Poornima Mahavadi; Ingrid Henneke; Philipp Markart; Miriam Koch; Gyoergy Lang; Ludger Fink; Rainer-Maria Bohle; Werner Seeger; Timothy E. Weaver; Andreas Guenther

RATIONALE The molecular pathomechanisms underlying idiopathic pulmonary fibrosis (IPF) are elusive, but chronic epithelial injury has recently been suggested as key event. OBJECTIVES We investigated the possible implication of endoplasmic reticulum (ER) stress-mediated apoptosis in sporadic IPF. METHODS We analyzed peripheral explanted lung tissues from patients with sporadic IPF (n = 24), chronic obstructive pulmonary disease (COPD) (n = 9), and organ donors (n = 12) for expression of major ER stress mediators and apoptosis markers by means of immunoblotting, semiquantitative reverse transcription-polymerase chain reaction, immunohistochemistry, and the TUNEL method. MEASUREMENTS AND MAIN RESULTS Compared with COPD and donor lungs, protein levels of ER stress mediators, such as processed p50 activating transcription factor (ATF)-6 and ATF-4 and the apoptosis-inductor CHOP (C/EBP-homologous protein), as well as transcript levels of spliced X-box binding protein (XBP)-1, were significantly elevated in lung homogenates and type II alveolar epithelial cells (AECIIs) of IPF lungs. Proapoptotic, oligomeric forms of Bax, which play a key role in ER stress-mediated apoptosis downstream of CHOP induction, as well as caspase-3 cleavage, could be detected in IPF lungs. By means of immunohistochemistry, exclusive induction of active ATF-6, ATF-4, and CHOP in AECIIs was encountered in IPF but not in COPD or donor lungs. Immunoreactivity was most prominent in the epithelium near dense zones of fibrosis and fibroblast foci, where these ER stress markers colocalized with markers of apoptosis (TUNEL, cleaved caspase-3). CONCLUSIONS Severe ER stress response in the AECIIs of patients with sporadic IPF may underlie the apoptosis of this cell type and development of fibrosis in this disease.


Respiratory Research | 2001

Surfactant alteration and replacement in acute respiratory distress syndrome

Andreas Günther; Clemens Ruppert; Reinhold Schmidt; Philipp Markart; Friedrich Grimminger; Dieter Walmrath; Werner Seeger

The acute respiratory distress syndrome (ARDS) is a frequent, life-threatening disease in which a marked increase in alveolar surface tension has been repeatedly observed. It is caused by factors including a lack of surface-active compounds, changes in the phospholipid, fatty acid, neutral lipid, and surfactant apoprotein composition, imbalance of the extracellular surfactant subtype distribution, inhibition of surfactant function by plasma protein leakage, incorporation of surfactant phospholipids and apoproteins into polymerizing fibrin, and damage/inhibition of surfactant compounds by inflammatory mediators. There is now good evidence that these surfactant abnormalities promote alveolar instability and collapse and, consequently, loss of compliance and the profound gas exchange abnormalities seen in ARDS. An acute improvement of gas exchange properties together with a far-reaching restoration of surfactant properties was encountered in recently performed pilot studies. Here we summarize what is known about the kind and severity of surfactant changes occuring in ARDS, the contribution of these changes to lung failure, and the role of surfactant administration for therapy of ARDS.


European Respiratory Review | 2012

Unravelling the progressive pathophysiology of idiopathic pulmonary fibrosis

Andreas Günther; Martina Korfei; Poornima Mahavadi; Daniel von der Beck; Clemens Ruppert; Philipp Markart

Idiopathic pulmonary fibrosis (IPF) is a life-threatening condition, with a median survival of <3 yrs. The pathophysiology is not fully understood, but chronic injury of alveolar epithelial type II cells (AECII) is considered key. In IPF, disturbed folding and processing of surfactant proteins and impaired DNA repair may represent underlying reasons for maladaptive endoplasmic reticulum stress responses, increased reactive oxygen species production and/or DNA damage. Excessive AECII apoptosis occurs, leading to permanently perturbed epithelial homeostasis. The role of secondary hits also becomes evident. These may aggravate the disease and result in increased epithelial turnover, exhausting the regenerative capacity of progenitors and disturbing epithelial–mesenchymal interactions. Fibroblast proliferation, transdifferentiation and matrix deposition may be mediated through various mechanisms including epithelial–mesenchymal transition, fibrocyte invasion or expansion of a local fibroblast population. Treatment modalities aiming to attenuate epithelial injury are currently in early pre-clinical development and may reach the clinical arena in only a few years. Meanwhile, novel drugs acting on highly activated fibroblasts such as pirfenidone, an anti-fibrotic drug authorised for IPF in the European Union, or BIBF 1120, a novel triple-kinase inhibitor (blocking vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor) currently under clinical investigation, seem to attenuate the progression of IPF.


American Journal of Respiratory and Critical Care Medicine | 2011

Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury.

Roger G. Spragg; Friedemann J.H. Taut; James F. Lewis; Peter Schenk; Clemens Ruppert; Nathan Dean; Kenneth Krell; Andreas Karabinis; Andreas Günther

RATIONALE Patients with acute lung injury have impaired function of the lung surfactant system. Prior clinical trials have shown that treatment with exogenous recombinant surfactant protein C (rSP-C)-based surfactant results in improvement in blood oxygenation and have suggested that treatment of patients with severe direct lung injury may decrease mortality. OBJECTIVES Determine the clinical benefit of administering an rSP-C-based synthetic surfactant to patients with severe direct lung injury due to pneumonia or aspiration. METHODS A prospective randomized blinded study was performed at 161 centers in 22 countries. Patients were randomly allocated to receive usual care plus up to eight doses of rSP-C surfactant administered over 96 hours (n = 419) or only usual care (n = 424). MEASUREMENTS AND MAIN RESULTS Mortality to 28 days after treatment, the requirement for mechanical ventilation, and the number of nonpulmonary organ failure-free days were not different between study groups. In contrast to prior studies, there was no improvement in oxygenation in patients receiving surfactant compared with the usual care group. Investigation of the possible reasons underlying the lack of efficacy suggested a partial inactivation of rSP-C surfactant caused by a step of the resuspension process that was introduced with this study. CONCLUSIONS In this study, rSP-C-based surfactant was of no clinical benefit to patients with severe direct lung injury. The unexpected lack of improvement in oxygenation, coupled with the results of in vitro tests, suggest that the administered suspension may have had insufficient surface activity to achieve clinical benefit.


Laboratory Investigation | 2002

Cell-Specific Nitric Oxide Synthase-Isoenzyme Expression and Regulation in Response to Endotoxin in Intact Rat Lungs

Monika Ermert; Clemens Ruppert; Andreas Günther; Hans-Rainer Duncker; Werner Seeger; Leander Ermert

Nitric oxide (NO) produced by NO synthase (NOS) serves as a ubiquitous mediator molecule involved in many physiologic lung functions, including regulation of vascular and bronchial tone, immunocompetence, and neuronal signaling. On the other hand, excessive and inappropriate NO synthesis in inflammation and sepsis has been implicated in vascular abnormalities and cell injury. At least three different NOS isoforms (neuronal/brain [bNOS], inducible [iNOS], and endothelial [eNOS]) have been described, which are all expressed in normal lung tissue. We investigated the cell-specific expression of bNOS, iNOS, and eNOS in perfused control rat lungs and lungs undergoing stimulation with endotoxin in the presence and absence of plasma constituents. Lung immunohistochemistry and quantitative evaluation of staining intensity showed endotoxin-induced increase in iNOS expression in particular in bronchial epithelial cells, cells of the bronchus-associated lymphoid tissue (BALT), alveolar macrophages, and vascular smooth muscle cells in a time- and dose-dependent fashion. In endothelial cells, which did not express iNOS at baseline, newly induced iNOS was found in response to endotoxin. In contrast, expression of eNOS was markedly suppressed under endotoxin challenge, particularly in bronchial epithelium, BALT, and alveolar macrophages but also in vascular smooth muscle cells and endothelial cells. eNOS expression in bronchial smooth muscle cells was not altered. In contrast to iNOS and eNOS, cellular expression of bNOS in epithelial cells, nerve fibers, BALT, and endothelial cells did not change in response to endotoxin. All changes in NOS regulation were found to be independent of plasma constituents. We conclude that endotoxin exerts a profound impact on the cell-specific NOS regulation in a large number of lung cell types. Prominent features include de novo synthesis or up-regulation of iNOS, in contrast to down-regulation of eNOS, which may well contribute to vascular abnormalities, inflammatory sequelae, and loss of physiologic functions in septic lung failure.


Respiratory Research | 2007

Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration

Reinhold Schmidt; Philipp Markart; Clemens Ruppert; Malgorzata Wygrecka; Tim Kuchenbuch; Dieter Walmrath; Werner Seeger; Andreas Guenther

BackgroundAlterations to pulmonary surfactant composition have been encountered in the Acute Respiratory Distress Syndrome (ARDS). However, only few data are available regarding the time-course and duration of surfactant changes in ARDS patients, although this information may largely influence the optimum design of clinical trials addressing surfactant replacement therapy. We therefore examined the time-course of surfactant changes in 15 patients with direct ARDS (pneumonia, aspiration) over the first 8 days after onset of mechanical ventilation.MethodsThree consecutive bronchoalveolar lavages (BAL) were performed shortly after intubation (T0), and four days (T1) and eight days (T2) after intubation. Fifteen healthy volunteers served as controls. Phospholipid-to-protein ratio in BAL fluids, phospholipid class profiles, phosphatidylcholine (PC) molecular species, surfactant proteins (SP)-A, -B, -C, -D, and relative content and surface tension properties of large surfactant aggregates (LA) were assessed.ResultsAt T0, a severe and highly significant reduction in SP-A, SP-B and SP-C, the LA fraction, PC and phosphatidylglycerol (PG) percentages, and dipalmitoylation of PC (DPPC) was encountered. Surface activity of the LA fraction was greatly impaired. Over time, significant improvements were encountered especially in view of LA content, DPPC, PG and SP-A, but minimum surface tension of LA was not fully restored (15 mN/m at T2). A highly significant correlation was observed between PaO2/FiO2 and minimum surface tension (r = -0.83; p < 0.001), SP-C (r = 0.64; p < 0.001), and DPPC (r = 0.59; p = 0.003). Outcome analysis revealed that non-survivors had even more unfavourable surfactant properties as compared to survivors.ConclusionWe concluded that a profound impairment of pulmonary surfactant composition and function occurs in the very early stage of the disease and only gradually resolves over time. These observations may explain why former surfactant replacement studies with a short treatment duration failed to improve outcome and may help to establish optimal composition and duration of surfactant administration in future surfactant replacement studies in acute lung injury.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Biophysical investigation of pulmonary surfactant surface properties upon contact with polymeric nanoparticles in vitro

Moritz Beck-Broichsitter; Clemens Ruppert; Thomas Schmehl; Andreas Guenther; Thomas Betz; Udo Bakowsky; Werner Seeger; Thomas Kissel; Tobias Gessler

UNLABELLED Nanoparticulate drug carriers have been proposed for the targeted and controlled release of pharmaceuticals to the lung. However, inhaled particles may adversely affect the biophysical properties of pulmonary surfactant. This study examines the influence of polymeric nanoparticles with distinct physicochemical properties on the adsorption and dynamic surface tension lowering properties of pulmonary surfactant. Nanoparticles had a mean size of 100 nm with narrow size distributions. Although poly(styrene) and poly(D,L-lactide-co-glycolide) nanoparticles revealed a dose-dependent influence on biophysics of pulmonary surfactant, positively-charged nanoparticles made from poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate) showed no effect. This behavior is attributed to the differences in ζ-potential and surface hydrophobicity, which in turn involves an altered adsorption pattern of the positively charged surfactant proteins to the nanoparticles. This study suggests that polymeric nanoparticles do not substantially affect the biophysical properties of pulmonary surfactant and may be a viable drug-delivery vehicle for the inhalative treatment of respiratory diseases. FROM THE CLINICAL EDITOR Inhaled nanoparticulate drug carriers may adversely affect the biophysical properties of pulmonary surfactant. In this study the influence of polymeric nanoparticles was characterized from this standpoint, with the conclusion that polymeric nanoparticles do not substantially affect the biophysical properties of pulmonary surfactant and may be viable drug-delivery vehicles for inhalational treatment.


American Journal of Respiratory and Critical Care Medicine | 2010

Epithelial Stress and Apoptosis Underlie Hermansky-Pudlak Syndrome–associated Interstitial Pneumonia

Poornima Mahavadi; Martina Korfei; Ingrid Henneke; Gerhard Liebisch; Gerd Schmitz; Bernadette R. Gochuico; Philipp Markart; Saverio Bellusci; Werner Seeger; Clemens Ruppert; Andreas Guenther

RATIONALE The molecular mechanisms underlying Hermansky-Pudlak syndrome-associated interstitial pneumonia (HPSIP) are poorly understood but, as in idiopathic pulmonary fibrosis, may be linked to chronic alveolar epithelial type II cell (AECII) injury. OBJECTIVES We studied the development of fibrosis and the role of AECII injury in various murine models of HPS. METHODS HPS1, HPS2, and HPS6 monomutant mice, and HPS1/2 and HPS1/6 double-mutant and genetic background mice, were killed at 3 and 9 months of age. Quantitative morphometry was undertaken in lung sections stained with hemalaun-eosin. The extent of lung fibrosis was assessed by trichrome staining and hydroxyproline measurement. Surfactant lipids were analyzed by electrospray ionization mass spectrometry. Surfactant proteins, apoptosis, and lysosomal and endoplasmic reticulum stress markers were studied by Western blotting and immunohistochemistry. Cell proliferation was measured by water-soluble tetrazolium salt-1 and bromodeoxyuridine assays. MEASUREMENTS AND MAIN RESULTS Spontaneous and slowly progressive HPSIP was observed in HPS1/2 double mutants, but not in other HPS mutants, with subpleural onset at 3 months and full-blown fibrosis at 9 months. In these mice, extensive surfactant abnormalities were encountered in AECII and were paralleled by early lysosomal stress (cathepsin D induction), late endoplasmic reticulum stress (activating transcription factor-4 [ATF4], C/EBP homologous protein [CHOP] induction), and marked apoptosis. These findings were fully corroborated in human HPSIP. In addition, cathepsin D overexpression resulted in apoptosis of MLE-12 cells and increased proliferation of NIH 3T3 fibroblasts incubated with conditioned medium of the transfected cells. CONCLUSIONS Extensively impaired surfactant trafficking and secretion underlie lysosomal and endoplasmic reticulum stress with apoptosis of AECII in HPSIP, thereby causing the development of HPSIP.


European Respiratory Journal | 2002

Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties

Andreas Günther; R. Schmidt; J. Harodt; Thomas Schmehl; Dieter Walmrath; Clemens Ruppert; F. Grimminger; Werner Seeger

The purpose of the present study was to investigate the impact of bronchoscopic surfactant administration, on the biochemical and biophysical surfactant properties, in patients with severe and early acute respiratory distress syndrome (ARDS) and septic shock. A total number of 27 ARDS patients received 300–500 mg·kg·body·weight−1 of a natural bovine surfactant extract (Alveofact®) via a flexible bronchoscope. Bronchoalveolar lavages were performed 3 h prior to, and 15–18 h and 72 h after surfactant administration. A comparison to healthy volunteers, undergoing an identical lavage procedure, was made (control, n=12). Severe biophysical and biochemical surfactant abnormalities were encountered throughout in the ARDS patients. These included a massive alveolar protein load, a reduced percentage of large surfactant aggregates (LA), a loss of palmitoylated phosphatidylcholine species and a significant reduction of surfactant apoprotein (SP)-A, SP-B and SP-C in the LA fraction. Both minimum (γmin) and adsorption (γads) surface tension values (pulsating bubble surfactometer) were dramatically increased. Surfactant treatment resulted in a marked increase in the lavagable phospholipid (PL) pool, but predominance of the alveolar surfactant-inhibitory protein load was still encountered. Far-reaching or even complete normalization of the PL profile, the LA fraction and its SP-B and SP-C (but not SP-A) content as well as the fatty acid composition of the phosphatidylcholine class was noted. Surface tension lowering properties (γmin and γads) significantly improved, but were still not fully normalized. Bronchoscopic administration of large quantities of natural bovine surfactant in severe acute respiratory distress syndrome causes far-reaching restoration of biochemical surfactant properties and significant improvement, however not full normalization, of biophysical surfactant function.

Collaboration


Dive into the Clemens Ruppert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Knudsen

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge