Clemente Ibarra
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clemente Ibarra.
Clinical medicine insights. Arthritis and musculoskeletal disorders | 2011
Yulia A. Savitskaya; Aldo Izaguirre; Luis Sierra; Francisco Javier Pereda Pérez; Francisco González Santa Cruz; Enrique Villalobos; Arturo Almazán; Clemente Ibarra
Background Hallmarks of the pathogenesis of rotator cuff disease (RCD) include an abnormal immune response, angiogenesis, and altered variables of vascularity. Degenerative changes enhance production of pro-inflammatory, anti-inflammatory, and vascular angiogenesis-related cytokines (ARC) that play a pivotal role in the immune response to arthroscopic surgery and participate in the pathogenesis of RCD. The purpose of this study was to evaluate the ARC profile, ie, interleukin (IL): IL-1β, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and angiogenin (ANG), in human peripheral blood serum and correlate this with early degenerative changes in patients with RCD. Methods Blood specimens were obtained from 200 patients with RCD and 200 patients seen in the orthopedic clinic for nonrotator cuff disorders. Angiogenesis imaging assays was performed using power Doppler ultrasound to evaluate variables of vascularity in the rotator cuff tendons. Expression of ARC was measured by commercial Bio-Plex Precision Pro Human Cytokine Assays. Results Baseline concentrations of IL-1β, IL-8, and VEGF was significantly higher in RCD patients than in controls. Significantly higher serum VEGF levels were found in 85% of patients with RCD, and correlated with advanced stage of disease (r = 0.75; P < 0.0005), average microvascular density (r = 0.68, P < 0.005), and visual analog score (r = 0.75, P < 0.0002) in RCD patients. ANG and IL-10 levels were significantly lower in RCD patients versus controls. IL-1β and ANG levels were significantly correlated with degenerative tendon grade in RCD patients. No difference in IL-6 and bFGF levels was observed between RCD patients and controls. Patients with degenerative changes had markedly lower ANG levels compared with controls. Power Doppler ultrasound showed high blood vessel density in patients with tendon rupture. Conclusion The pathogenesis of RCD is associated with an imbalance between pro-inflammatory, anti-inflammatory, and vascular ARC.
Asaio Journal | 2015
Roberto Sánchez-Sánchez; Ana Brena-Molina; Valentín Martínez-López; Yaaziel Melgarejo-Ramírez; Lenin Tamay de Dios; Ricardo Gómez-García; Ma. de Lourdes Reyes-Frías; Lourdes Rodríguez-Rodríguez; David Garciadiego-Cázares; Haydée Lugo-Martínez; Clemente Ibarra; María Esther Martínez-Pardo; Cristina Velasquillo-Martínez
Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1&bgr;, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries.
Archive | 2013
Zaira Y. García-Carvajal; David Garciadiego-Cázares; Carmen Parra-Cid; Rocío Aguilar-Gaytán; Cristina Velasquillo; Clemente Ibarra; Javier S. Castro Carmona
Articular cartilage is a hyaline cartilage that consists primarily of extracellular matrix with a sparse population of cells, lacking blood vessels, lymphatic vessels and nerves. The only cell type within cartilage is the chondrocyte and has a low level of metabolic activity with little or no cell division and is the responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. The biological and mechanical properties of articular cartilage depend on the interactions between the chondrocytes and the matrix that maintain the tissue. Chon‐ drocytes form the macromolecular framework of the tissue matrix from three classes of molecules: collagens, proteoglycans, and non-collagenous proteins and maintain the extrac‐ ellular matrix (ECM) by low-turnover replacement of certain matrix proteins [1, 2].
PLOS ONE | 2015
David Garciadiego-Cázares; Hilda I. Aguirre-Sánchez; René Fernando Abarca-Buis; Juan B. Kouri; Cristina Velasquillo; Clemente Ibarra
The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy-pertrophy.
Stem Cells International | 2017
Roberto Berebichez-Fridman; Ricardo Gómez-García; Julio Granados-Montiel; Enrique Berebichez-Fastlicht; Anell Olivos-Meza; Julio Granados; Cristina Velasquillo; Clemente Ibarra
Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties.
Arthroscopy | 2014
Clemente Ibarra; Aldo Izaguirre; Enrique Villalobos; Maria Masri; Germán Lombardero; Valentin Martinez; Cristina Velasquillo; Anell Olivos Meza; Victor Guevara; Luis Guillermo Ibarra
PURPOSE The purpose of this study was to evaluate the clinical and sequential imaging follow-up results at a mean of 36 months after an arthroscopic technique for implantation of matrix-encapsulated autologous chondrocytes for the treatment of articular cartilage lesions on the femoral condyles. METHODS Ten patients underwent arthroscopic implantation of autologous chondrocytes seeded onto a bioabsorbable scaffold. The patients were evaluated clinically using a visual analog scale (VAS) for pain and International Knee Documentation Committee (IKDC), Lysholm, and Tegner scores. Magnetic resonance imaging (MRI) T2-mapping and magnetic resonance observation of cartilage repair tissue (MOCART) evaluations were also performed. Second-look arthroscopic evaluation using the International Cartilage Repair Society (ICRS) grading classification was performed at 12 months. RESULTS Compared with their preoperative values, at 36 months mean values ± standard deviation for the VAS scale for pain were 6.0 ± 1.5 to 0.3 ± 0.4. Improvement in clinical scores between preoperative values and 36-month follow-up values in subjective IKDC scores was 46.9 ± 18.5 to 77.2 ± 12.8; in Lysholm scores, it was 51.8 ± 25.1 to 87.9 ± 6.5, and in the Tegner activity scale it was 2.9 ± 1.7 to 5.9 ± 1.9. Mean T2 mapping and MOCART scores improved over time to 38.1 ± 4.4 ms and 72.5 ± 10, respectively. Mean ICRS score by second-look arthroscopy at 1 year was 10.4 ± 0.1. CONCLUSIONS All clinical scores improved over time compared with the preoperative values. Clinical results are comparable with MRI T2 mapping and ICRS evaluations, suggesting that this arthroscopic technique for cell-based cartilage repair is efficacious and reproducible at a mean of 36 months of follow-up. LEVEL OF EVIDENCE Level IV, therapeutic case series.
Neurotoxicology and Teratology | 2014
Carmen Parra-Cid; Julieta García-López; Esperanza García; Clemente Ibarra
The enteric nervous system (ENS) of mammals is derived from neural crest (NC) cells during embryogenesis and at the beginning of postnatal life. However, neural progenitor cells from the ENS (or ENSPC) are also found in the adult intestine and can be used for neuronal regeneration in diseases that lead to a loss of cell population, such as Parkinsons disease (PD), in which there is a decrease of dopaminergic neurons. The objective of this study was to evaluate the capacity of ENSPC to restore damaged nervous tissue and to show that they are functional for a behavioral and neurochemical recovery. We found that animals with ENSPC implants exhibited a motor recovery of 35% vs. the lesion group. In addition, DA levels were partially restored in 34%, while Homovanillic acid (HVA) levels remained at 21% vs. the group with a 6-Hydroxydopamine (6-OHDA)-induced lesion, suggesting that ENSPC represent a possible alternative in the study of cell transplants and the preservation of functional dopaminergic neurons in PD.
Cell and Tissue Banking | 2013
Carlos Landa-Solís; Leticia Vázquez-Maya; María Esther Martínez-Pardo; Ana Brena-Molina; Erika Ruvalcaba; Ricardo Gómez; Clemente Ibarra; Cristina Velasquillo
Several ocular diseases affect the corneal surface; the development of effective technologies for the treatment of corneal lesions has brought about an improvement in the quality of life of affected patients. The aim of this study is to culture and characterize limbal stem cells cultured on gamma (60Co) radiosterilized human amnion (RHA). Limbal stem cells were isolated from ten preserved samples of corneal transplant. The cells were cultured since primary culture until expanded cells on RHA and stained with monoclonal antibodies to establish their immunophenotype, after which cytokeratin 12 and Vimentin were positive by immunohistochemistry. The immunophenotype remained constant since primary culture until expanded cells in RHA. The RHA and cells construct were structurally integrated. Immunohistochemistry was cytokeratin 12, Vimentin positive, and cytokeratin 19 negative. In vitro limbal cells maintain a constant epithelial transition immunophenotype in culture up to primary culture until expanded cells on RHA.
Biomarkers in Cancer | 2010
Yulia A. Savitskaya; Genaro Rico; Luis Linares; Roberto González; René Téllez; Eréndira Estrada; Norma Marín; Elisa Martínez; Alfonso Alfaro; Clemente Ibarra
Background Tumor immunology research has led to the identification of a number of tumor-associated self antigens, suggesting that most tumors trigger an immunogenic response, as is the case in osteosarcoma, where the detection of natural serum IgM antibodies might achieve the diagnosis of osteosarcoma. Natural IgM antibodies to tumor-associated proteins may expand the number of available tumor biomarkers for osteosarcoma and may be used together in a serum profile to enhance test sensitivity and specificity. Natural IgM antibodies can be consistently detected in the peripheral blood sera months to years before the tumor is diagnosed clinically. The study of the level of a potential biomarker many months (or years) prior to diagnosis is fundamentally important. Integrated circulating and imaging markers in clinical practice treating osteosarcoma have potential applications for controlling tumor angiogenesis. Objectives To study the expression of natural IgM antibodies to the tumor antigens of angiogenesis in the peripheral blood sera of osteosarcoma patients and healthy individuals, and to develop serum-based predictive biomarkers. Methods Peripheral venous blood samples were collected from 117 osteosarcoma patients and 117 patients with other tumors. All diagnosis was histologically confirmed. Staging of patients was performed according to the Enneking Surgical Staging System. The control group consisted of 117 age- and sex- matched healthy individuals. In this study, novel immunoconjugates were designed, synthesized and then used to develop a rapid, specific and sensitive enzyme-linked immunosorbent assay (ELISA) method to detect angiogenin (ANG)–IgM directly in the peripheral blood sera of humans. Results Serum ANG–IgM levels are significantly higher in osteosarcoma patients than in healthy individuals (P < 0.005). Serum ANG–IgM levels varied widely, but were highly dependent on the concentration of IgM (r = 0.85; P < 0.0005). We found ANG–IgM in the sera of 85% of newly diagnosed osteosarcoma patients and ANG–IgM levels were significantly higher in osteosarcoma patients compared to any other tumors (P < 0.001). Conclusions These results demonstrated that the combined biomarker ANG–IgM has greater sensitivity and specificity in early diagnosis of osteosarcoma patients than the traditional biomarkers (ANG and vascular endothelial growth factor). Circulating ANG–IgM immune complexes can potentially serve as a biomarker for increased risk of osteosarcoma, because relatively high serum levels were also detected in otherwise healthy individuals with a first degree family history of osteosarcoma and in patients with a diagnosis of benign conditions. Immunological aspects of angiogenesis for managing osteosarcoma will have a practical value in early diagnosis, prognosis and monitoring response to antiangiogenic therapy.
Reumatología Clínica | 2007
Clemente Ibarra; David Garciadiego; Valentin Martinez; Cristina Velasquillo
Articular cartilage lesions predispose to the development of early osteoarthritis. Most current surgical techniques give rise to the formation of fibrocartilage with biochemical and biomechanical properties inferior to those or articular cartilage. Tissue engineering could offer a modern alternative to the treatment of these lesions and in this way, prevent the development of early osteoarthritis in young active patients. Different tissue engineering approaches rely on the current use of autologous chondrocytes, or the potential use of mesenchymal stem cells. Other variables rely on the type of scaffold to use such as synthetic biodegradable polymers, fibrin or collagen-derived scaffolds of different sources, bovine, porcine, rat tail, etc, in the form of gels, sponges, mesh, etc, and all of these with or without growth factors. The use of autologous chondrocytes is a reality at the present time, whether injected under a periosteum patch or seeded on collagen. However, most investigators and biotech companies are in search of onestep surgical procedures, for which reason stem cells have to be kept in mind, as well as systems that will allow arthroscopic implantation.Las lesiones de cartilago articular predisponen al desarrollo precoz de osteoartritis. La mayoria de las tecnicas quirurgicas actuales para el tratamiento de lesiones condrales dan lugar a la formacion de fibrocartilago con propiedades bioquimicas y biomecanicas inferiores a las del cartilago articular. La ingenieria de tejidos puede ofrecer una alternativa moderna para el tratamiento de estas lesiones y de esta forma prevenir el desarrollo de osteoartritis en pacientes jovenes activos. Existen diferentes alternativas en cuanto al tipo de celulas para implantar como tratamiento, ya sean el actual uso de condrocitos autologos o celulas troncales mesenquimales. La otra variable es el tipo de andamio sobre el cual cultivar o sembrar la celulas para su implante: materiales sinteticos biocompatibles y bioabsorbibles, los derivados de fibrina o de colageno de diferentes fuentes (bovina, porcina, de cola de rata, etc.), en forma de geles, esponjas, mallas, etc., y todas ellas con o sin la adicion de factores de crecimiento. En la actualidad, el uso de condrocitos autologos es una realidad, ya sea inyectados en suspension bajo un parche de periostio o sembrados en colageno. Casi todos los investigadores y las empresas de biotecnologia estan buscando tecnicas para las que no se requieran dos intervenciones quirurgicas, por lo cual muy probablemente habra que pensar en celulas troncales y con sistemas de implantacion artroscopicos