Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clifford J. Woolf is active.

Publication


Featured researches published by Clifford J. Woolf.


The Lancet | 2006

Persistent postsurgical pain: risk factors and prevention

Henrik Kehlet; Troels Staehelin Jensen; Clifford J. Woolf

Acute postoperative pain is followed by persistent pain in 10-50% of individuals after common operations, such as groin hernia repair, breast and thoracic surgery, leg amputation, and coronary artery bypass surgery. Since chronic pain can be severe in about 2-10% of these patients, persistent postsurgical pain represents a major, largely unrecognised clinical problem. Iatrogenic neuropathic pain is probably the most important cause of long-term postsurgical pain. Consequently, surgical techniques that avoid nerve damage should be applied whenever possible. Also, the effect of aggressive, early therapy for postoperative pain should be investigated, since the intensity of acute postoperative pain correlates with the risk of developing a persistent pain state. Finally, the role of genetic factors should be studied, since only a proportion of patients with intraoperative nerve damage develop chronic pain. Based on information about the molecular mechanisms that affect changes to the peripheral and central nervous system in neuropathic pain, several opportunities exist for multimodal pharmacological intervention. Here, we outline strategies for identification of patients at risk and for prevention and possible treatment of this important entity of chronic pain.


The Lancet | 1999

Neuropathic pain: aetiology, symptoms, mechanisms, and management

Clifford J. Woolf; Richard J. Mannion

We highlight current theories about peripheral neuropathic pain and show that progress in management is contingent on targeting treatment not at the aetiological factors or the symptoms but at the mechanisms that operate to produce the symptoms. This approach will require substantial progress in our understanding of the pathophysiology of neuropathic pain, the development of accurate diagnostic tools to discover what mechanisms contribute to the pain syndrome in an individual, and effective treatments aimed specifically at the mechanisms.


Pain | 1991

The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states

Clifford J. Woolf; S.W.N. Thompson

&NA; Repetitive stimulation of small diameter primary afferent fibres produces a progressive increase in action potential discharge (windup) and a prolonged increase in the excitability of neurones in the spinal cord following the stimulus. Previous studies have demonstrated that windup is the consequence of the temporal summation of slow synaptic potentials and that the slow potentials and windup are reduced by pretreatment with N‐methyl‐d‐aspartic acid (NMDA) antagonists. We have now examined whether primary afferent induced hypersensitivity states in flexor motoneurones are also dependent on the activation of NMDA receptors and whether windup is a possible trigger for the production of the central hypersensitivity. Both a non‐competitive (MK‐801) and a competitive (D‐CPP) NMDA antagonist, at doses that did not modify the baseline reflex, reduced the facilitation of the flexor reflex produced by either brief electrical stimulation of the sural nerve (1 Hz for 20 sec at C‐fibre strength), or by the cutaneous application of the chemical irritant mustard oil. These antagonists also prevented windup from occurring in the motoneurones. When the the MK‐801 and the D‐CPP were administered once a state of central facilitation had been induced by prior treatment with mustard oil, they returned the facilitated reflex to its pretreatment level. These results indicate that NMDA receptors are involved in the induction and maintenance of the central sensitization produced by high threshold primary afferent inputs. Because central sensitization is likely to contribute to the post‐injury pain hypersenstivity states in man, these data have a bearing both on the potential role of NMDA antagonists for pre‐emptive analgesia and for treating established pain states.


Pain | 2011

Central sensitization: Implications for the diagnosis and treatment of pain

Clifford J. Woolf

&NA; Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. Studies in clinical cohorts reveal changes in pain sensitivity that have been interpreted as revealing an important contribution of central sensitization to the pain phenotype in patients with fibromyalgia, osteoarthritis, musculoskeletal disorders with generalized pain hypersensitivity, headache, temporomandibular joint disorders, dental pain, neuropathic pain, visceral pain hypersensitivity disorders and post‐surgical pain. The comorbidity of those pain hypersensitivity syndromes that present in the absence of inflammation or a neural lesion, their similar pattern of clinical presentation and response to centrally acting analgesics, may reflect a commonality of central sensitization to their pathophysiology. An important question that still needs to be determined is whether there are individuals with a higher inherited propensity for developing central sensitization than others, and if so, whether this conveys an increased risk in both developing conditions with pain hypersensitivity, and their chronification. Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity‐dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity.


The Journal of Pain | 2009

Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity

Alban Latremoliere; Clifford J. Woolf

UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.


Pain | 2000

Spared nerve injury: an animal model of persistent peripheral neuropathic pain

Isabelle Decosterd; Clifford J. Woolf

&NA; Peripheral neuropathic pain is produced by multiple etiological factors that initiate a number of diverse mechanisms operating at different sites and at different times and expressed both within, and across different disease states. Unraveling the mechanisms involved requires laboratory animal models that replicate as far as possible, the different pathophysiological changes present in patients. It is unlikely that a single animal model will include the full range of neuropathic pain mechanisms. A feature of several animal models of peripheral neuropathic pain is partial denervation. In the most frequently used models a mixture of intact and injured fibers is created by loose ligation of either the whole (Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33:87–107) or a tight ligation of a part (Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990;43:205–218) of a large peripheral nerve, or a tight ligation of an entire spinal segmental nerve (Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50:355–363). We have developed a variant of partial denervation, the spared nerve injury model. This involves a lesion of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact. The spared nerve injury model differs from the Chung spinal segmental nerve, the Bennett chronic constriction injury and the Seltzer partial sciatic nerve injury models in that the co‐mingling of distal intact axons with degenerating axons is restricted, and it permits behavioral testing of the non‐injured skin territories adjacent to the denervated areas. The spared nerve injury model results in early (<24 h), prolonged (>6 months), robust (all animals are responders) behavioral modifications. The mechanical (von Frey and pinprick) sensitivity and thermal (hot and cold) responsiveness is increased in the ipsilateral sural and to a lesser extent saphenous territories, without any change in heat thermal thresholds. Crush injury of the tibial and common peroneal nerves produce similar early changes, which return, however to baseline at 7–9 weeks. The spared nerve injury model may provide, therefore, an additional resource for unraveling the mechanisms responsible for the production of neuropathic pain.


Nature Neuroscience | 2007

The neuropathic pain triad: neurons, immune cells and glia.

Joachim Scholz; Clifford J. Woolf

Nociceptive pain results from the detection of intense or noxious stimuli by specialized high-threshold sensory neurons (nociceptors), a transfer of action potentials to the spinal cord, and onward transmission of the warning signal to the brain. In contrast, clinical pain such as pain after nerve injury (neuropathic pain) is characterized by pain in the absence of a stimulus and reduced nociceptive thresholds so that normally innocuous stimuli produce pain. The development of neuropathic pain involves not only neuronal pathways, but also Schwann cells, satellite cells in the dorsal root ganglia, components of the peripheral immune system, spinal microglia and astrocytes. As we increasingly appreciate that neuropathic pain has many features of a neuroimmune disorder, immunosuppression and blockade of the reciprocal signaling pathways between neuronal and non-neuronal cells offer new opportunities for disease modification and more successful management of pain.


Nature | 2001

Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity

Tarek A. Samad; Kimberly A. Moore; Adam Sapirstein; Sara Billet; Andrew Allchorne; Stephen Poole; Joseph V. Bonventre; Clifford J. Woolf

Inflammation causes the induction of cyclooxygenase-2 (Cox-2), leading to the release of prostanoids, which sensitize peripheral nociceptor terminals and produce localized pain hypersensitivity. Peripheral inflammation also generates pain hypersensitivity in neighbouring uninjured tissue (secondary hyperalgesia), because of increased neuronal excitability in the spinal cord (central sensitization), and a syndrome comprising diffuse muscle and joint pain, fever, lethargy and anorexia. Here we show that Cox-2 may be involved in these central nervous system (CNS) responses, by finding a widespread induction of Cox-2 expression in spinal cord neurons and in other regions of the CNS, elevating prostaglandin E2 (PGE2) levels in the cerebrospinal fluid. The major inducer of central Cox-2 upregulation is interleukin-1β in the CNS, and as basal phospholipase A2 activity in the CNS does not change with peripheral inflammation, Cox-2 levels must regulate central prostanoid production. Intraspinal administration of an interleukin-converting enzyme or Cox-2 inhibitor decreases inflammation-induced central PGE2 levels and mechanical hyperalgesia. Thus, preventing central prostanoid production by inhibiting the interleukin-1β-mediated induction of Cox-2 in neurons or by inhibiting central Cox-2 activity reduces centrally generated inflammatory pain hypersensitivity.


Neuron | 2002

p38 MAPK Activation by NGF in Primary Sensory Neurons after Inflammation Increases TRPV1 Levels and Maintains Heat Hyperalgesia

Ru-Rong Ji; Tarek A. Samad; Shan-Xue Jin; Raymond Schmoll; Clifford J. Woolf

Peripheral inflammation induces p38 MAPK activation in the soma of C fiber nociceptors in the dorsal root ganglion (DRG) after 24 hr. Inflammation also increases protein, but not mRNA levels, of the heat-gated ion channel TRPV1 (VR1) in these cells, which is then transported to peripheral but not central C fiber terminals. Inhibiting p38 activation in the DRG reduces the increase in TRPV1 in the DRG and inflamed skin and diminishes inflammation-induced heat hypersensitivity without affecting inflammatory swelling or basal pain sensitivity. p38 activation in the DRG is secondary to peripheral production of NGF during inflammation and is required for NGF-induced increases in TRPV1. The activation of p38 in the DRG following retrograde NGF transport, by increasing TRPV1 levels in nociceptor peripheral terminals in a transcription-independent fashion, contributes to the maintenance of inflammatory heat hypersensitivity.


Annual Review of Neuroscience | 2009

Neuropathic Pain: A Maladaptive Response of the Nervous System to Damage

Michael Costigan; Joachim Scholz; Clifford J. Woolf

Neuropathic pain is triggered by lesions to the somatosensory nervous system that alter its structure and function so that pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. The pain is an expression of maladaptive plasticity within the nociceptive system, a series of changes that constitute a neural disease state. Multiple alterations distributed widely across the nervous system contribute to complex pain phenotypes. These alterations include ectopic generation of action potentials, facilitation and disinhibition of synaptic transmission, loss of synaptic connectivity and formation of new synaptic circuits, and neuroimmune interactions. Although neural lesions are necessary, they are not sufficient to generate neuropathic pain; genetic polymorphisms, gender, and age all influence the risk of developing persistent pain. Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.

Collaboration


Dive into the Clifford J. Woolf's collaboration.

Top Co-Authors

Avatar

Michael Costigan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge