Clifford M. Bray
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clifford M. Bray.
New Phytologist | 2011
Wanda M. Waterworth; Georgina E. Drury; Clifford M. Bray; Christopher E. West
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Plant Journal | 2010
Wanda M. Waterworth; Ghzaleh Masnavi; Rajni M. Bhardwaj; Qing Jiang; Clifford M. Bray; Christopher E. West
DNA repair is important for maintaining genome integrity. In plants, DNA damage accumulated in the embryo of seeds is repaired early in imbibition, and is important for germination performance and seed longevity. An essential step in most repair pathways is the DNA ligase-mediated rejoining of single- and double-strand breaks. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Here, we report the characterization of DNA LIGASE VI, which is only found in plant species. The primary structure of this ligase shows a unique N-terminal region that contains a β-CASP motif, which is found in a number of repair proteins, including the DNA double-strand break (DSB) repair factor Artemis. Phenotypic analysis revealed a delay in the germination of atlig6 mutants compared with wild-type lines, and this delay becomes markedly exacerbated in the presence of the genotoxin menadione. Arabidopsis atlig6 and atlig6 atlig4 mutants display significant hypersensitivity to controlled seed ageing, resulting in delayed germination and reduced seed viability relative to wild-type lines. In addition, atlig6 and atlig6 atlig4 mutants display increased sensitivity to low-temperature stress, resulting in delayed germination and reduced seedling vigour upon transfer to standard growth conditions. Seeds display a rapid transcriptional DNA DSB response, which is activated in the earliest stages of water imbibition, providing evidence for the accumulation of cytotoxic DSBs in the quiescent seed. These results implicate AtLIG6 and AtLIG4 as major determinants of Arabidopsis seed quality and longevity.
Biochemical Society Transactions | 2004
Christopher E. West; Wanda M. Waterworth; Paul A. Sunderland; Clifford M. Bray
DSBs (double-strand breaks) are one of the most serious forms of DNA damage that can occur in a cells genome. DNA replication in cells containing DSBs, or following incorrect repair, may result in the loss of large amounts of genetic material, aneuploid daughter cells and cell death. There are two major pathways for DSB repair: HR (homologous recombination) uses an intact copy of the damaged region as a template for repair, whereas NHEJ (non-homologous end-joining) rejoins DNA ends independently of DNA sequence. In most plants, NHEJ is the predominant DSB repair pathway. Previously, the Arabidopsis NHEJ mutant atku80 was isolated and found to display hypersensitivity to bleomycin, a drug that causes DSBs in DNA. In the present study, the transcript profiles of wild-type and atku80 mutant plants grown in the presence and absence of bleomycin are determined by microarray analysis. Several genes displayed very strong transcriptional induction specifically in response to DNA damage, including the characterized DSB repair genes AtRAD51 and AtBRCA1. These results identify novel candidate genes that encode components of the DSB repair pathways active in NHEJ mutant plants.
BMC Plant Biology | 2009
Wanda M. Waterworth; Jaroslav Kozak; Claire M. Provost; Clifford M. Bray; Karel J. Angelis; Christopher E. West
BackgroundDNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability.ResultsKnockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs) and also double strand breaks (DSBs), implicating AtLIG1 in repair of both these lesions.ConclusionReduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.
Seed Science Research | 1991
P. A. Davison; Clifford M. Bray
An osmotic priming treatment of 14 days in a −1.0 MPa polyethylene glycol solution improves the germination performance of a highvigour seed lot of leek ( Allium porrum L., cv. Verina). Using in vivo pulse-labelling, two-dimensional polyacrylamide gel electrophoresis and fluorography, five polypeptides were found to be synthesized in embryonic tissue at 14 days of priming that were not present at 4 days of germination without prior priming. These polypeptides were still synthesized at 6 h of germination following priming. This time point lies in the 6–12 h lag phase in protein synthesis previously observed in leek embryo tissue during germination of primed seeds where there is little increase in the rate of synthesis over that seen at the end of priming. None of the polypeptides was synthesized at 2 days of germination after priming, a period of seedling growth. The five polypeptides appear to be specifically associated with the priming period. Two additional polypeptides were found in leek embryos that were synthesized at higher levels at the end of priming than during germination alone. These continued to be synthesized, at lower levels in leek embryo tissue upon germination after priming. Several polypeptides were identified in leek endosperm tissue which were synthesized at higher levels during priming than during germination and also two polypeptides whose synthesis appeared to be specific to germination.
Planta | 1980
L.Elisabeth Blowers; David A. Stormonth; Clifford M. Bray
A study has been made of the RNA and protein synthesising systems of wheat embryos isolated from seed lots having high viability but differing in vigour. The rate of RNA and protein synthesis in wheat embryos during the early hours of germination is related to the vigour of the seed lot. The imposition of a stress factor, in the nature of a sub-optimal germination temperature, during germination of isolated wheat embryos magnifies the differences in rates of protein and RNA synthesis between high and low vigour seed. Using cell-free protein synthesising systems it has been demonstrated that an important difference between high and low vigour embryos lies in the relative levels of messenger RNA in the embryo. High vigour embryos contain relatively higher levels of poly A+-RNA (i.e. potential mRNA species) than lower vigour embryos and furthermore the level of poly A+-RNA in high vigour embryos increases during early germination whilst in lower vigour embryos the level decreases. The difference in poly A+-RNA levels accounts, at least partially, for the differences in rates of protein synthesis observed between embryos from high and low vigour wheat seed during early germination at both optimal and sub-optimal germination temperatures.
Journal of Biological Chemistry | 2009
Jon K. Pittman; Clare Edmond; Paul A. Sunderland; Clifford M. Bray
The CrCAX1 gene encoding a Ca2+/H+ and Na+/H+ exchanger was cloned and characterized from the unicellular green alga Chlamydomonas reinhardtii to begin to understand the mechanisms of cation homeostasis in this model organism. CrCAX1 was more closely related to fungal cation exchanger (CAX) genes than those from higher plants but has structural characteristics similar to plant Ca2+/H+ exchangers including a long N-terminal tail. When CrCAX1-GFP was expressed in Saccharomyces cerevisiae, it localized at the vacuole. CrCAX1 could suppress the Ca2+-hypersensitive phenotype of a yeast mutant and mediated proton gradient-dependent Ca2+/H+ exchange activity in vacuolar membrane vesicles. Ca2+ transport activity was increased following N-terminal truncation of CrCAX1, suggesting the existence of an N-terminal auto-regulatory mechanism. CrCAX1 could also provide tolerance to Na+ stress when expressed in yeast or Arabidopsis thaliana because of Na+/H+ exchange activity. This Na+/H+ exchange activity was not regulated by the N terminus of the CrCAX1 protein. A subtle tolerance by CrCAX1 in yeast to Co2+ stress was also observed. CrCAX1 was transcriptionally regulated in Chlamydomonas cells grown in elevated Ca2+ or Na+. This study has thus uncovered a novel eukaryotic proton-coupled transporter, CrCAX1, that can transport both monovalent and divalent cations and that appears to play a role in cellular cation homeostasis by the transport of Ca2+ and Na+ into the vacuole.
Journal of Experimental Botany | 2015
Wanda M. Waterworth; Clifford M. Bray; Christopher E. West
Seeds are important to agriculture and conservation of plant biodiversity. In agriculture, seed germination performance is an important determinant of crop yield, in particular under adverse climatic conditions. Deterioration in seed quality is associated with the accumulation of cellular damage to macromolecules including lipids, protein, and DNA. Mechanisms that mitigate the deleterious cellular damage incurred in the quiescent state and in cycles of desiccation-hydration are crucial for the maintenance of seed viability and germination vigour. In early-imbibing seeds, damage to the embryo genome must be repaired prior to initiation of cell division to minimize growth inhibition and mutation of genetic information. Here we review recent advances that have established molecular links between genome integrity and seed quality. These studies identified that maintenance of genome integrity is particularly important to the seed stage of the plant lifecycle, revealing new insight into the physiological roles of plant DNA repair and recombination mechanisms. The high conservation of DNA repair and recombination factors across plant species underlines their potential as promising targets for the improvement of crop performance and development of molecular markers for prediction of seed vigour.
Biochemical Society Transactions | 2004
Paul A. Sunderland; Christopher E. West; Wanda M. Waterworth; Clifford M. Bray
DNA ligase 1 (AtLIG1) is the only essential DNA ligase activity in Arabidopsis and is implicated in the important processes of DNA replication, repair and recombination and in transgene insertion during Agrobacterium-mediated plant transformations. The mitochondrial and nuclear forms of DNA ligase 1 in Arabidopsis are translated from a single mRNA species through the control of translation initiation from either the first (M1) or second (M2) in-frame AUG codons respectively. Translation from a third in-frame AUG codon (M3) occurs on transcripts in which M1 and M2 are mutagenized to stop codons. Wild-type AtLIG1-GFP constructs (where GFP stands for green fluorescent protein) can be targeted in planta to both the nucleus and mitochondria. AtLIG1-GFP translation from M1 specifically targets the fusion protein only to mitochondria in planta, whereas translation from M2 or M3 targets the fusion protein only to the nucleus. Interestingly, the AtLIG1-GFP fusion protein in which translation is initiated from M1 contains both an N-terminal mtPS (mitochondrial targeting presequence) and a nuclear localization signal; nonetheless, this protein is only targeted to the mitochondria. This result raises intriguing questions on the translational control mechanisms that regulate how the protein products of a single transcript are targeted to more than one cellular compartment.
Planta | 1976
Clifford M. Bray; J. Dasgupta
SummaryRNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.