Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clifton S. Buck is active.

Publication


Featured researches published by Clifton S. Buck.


Geochemistry Geophysics Geosystems | 2006

Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise

Clifton S. Buck; William M. Landing; Joseph A. Resing; Geoffrey T. Lebon

Dust aerosol samples were collected across the western North Pacific Ocean during May–June 2002. Samples were analyzed for soluble aerosol Fe(II), Fe(II) + Fe(III), and Al as well as major cations and anions. The aerosol samples were leached using a 10 second exposure to either filtered surface seawater or ultrapure deionized water yielding a measure of the “instantaneous” soluble fraction. A variety of analytical methods were employed, including 57Fe isotope dilution high-resolution ICP-MS, energy dispersive X-ray fluorescence, graphite furnace AAS, ion chromatography, and the FeLume chemiluminescent technique. Fe was found to be more soluble in ultrapure deionized water leaches, especially during periods of higher dust concentrations. Fe solubility averaged 9 ± 8% in ultrapure water leaches and 6 ± 5% in seawater leaches. Significant correlations were found between both soluble aerosol FeT and soluble Fe(II) concentrations and aerosol acidity; however, the percentages of soluble aerosol FeT and Fe(II) did not correlate with aerosol acidity We also did not observe significant correlations between total and soluble aerosol Fe concentrations and the concentrations of either particulate Fe or dissolved Fe in surface waters.


Environmental Science & Technology | 2011

Asian Industrial Lead Inputs to the North Pacific Evidenced by Lead Concentrations and Isotopic Compositions in Surface Waters and Aerosols

Céline Gallon; Mara A. Ranville; Christopher H. Conaway; William M. Landing; Clifton S. Buck; Peter L. Morton; A. Russell Flegal

Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.


Environmental Science & Technology | 2010

Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

Mara A. Ranville; Gregory A. Cutter; Clifton S. Buck; William M. Landing; Lynda S. Cutter; Joseph A. Resing; A. Russell Flegal

Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.


Global Biogeochemical Cycles | 2015

Dust deposition in the eastern Indian Ocean: The ocean perspective from Antarctica to the Bay of Bengal

Maxime M. Grand; Christopher I. Measures; Mariko Hatta; William T. Hiscock; Clifton S. Buck; William M. Landing

Atmospheric deposition is an important but still poorly constrained source of trace micronutrients to the open ocean because of the dearth of in situ measurements of total deposition (i.e., wet + dry deposition) in remote regions. In this work, we discuss the upper ocean distribution of dissolved Fe and Al in the eastern Indian Ocean along a 95°E meridional transect spanning the Antarctic margin to the Bay of Bengal. We use the mixed layer concentration of dissolved Al in conjunction with empirical data in a simple steady state model to produce 75 estimates of total dust deposition that we compare with historical observations and atmospheric model estimates. Except in the northern Bay of Bengal where the Ganges-Brahmaputra river plume contributes to the inventory of dissolved Al, the surface distribution of dissolved Al along 95°E is remarkably consistent with the large-scale gradients in mineral dust deposition and multiple-source regions impacting the eastern Indian Ocean. The lowest total dust deposition fluxes are calculated for the Southern Ocean (66 ± 60 mg m−2 yr−1) and the highest for the northern end of the south Indian subtropical gyre (up to 940 mg m−2 yr−1 at 18°S) and in the southern Bay of Bengal (2500 ± 570 mg m−2 yr−1). Our total deposition fluxes, which have an uncertainty on the order of a factor of 3.5, are comparable with the composite atmospheric model data of Mahowald et al. (2005), except in the south Indian subtropical gyre where models may underestimate total deposition. Using available measurements of the solubility of Fe in aerosols, we confirm that dust deposition is a minor source of dissolved Fe to the Southern Ocean and show that aeolian deposition of dissolved Fe in the southern Bay of Bengal may be comparable to that observed underneath the Saharan dust plume in the Atlantic Ocean.


Global Biogeochemical Cycles | 2014

Calcium carbonate dissolution in the upper 1000 m of the eastern North Atlantic

Pamela M. Barrett; Joseph A. Resing; Nathaniel J. Buck; Richard A. Feely; John L. Bullister; Clifton S. Buck; William M. Landing

Recent analyses suggest that considerable CaCO3 dissolution may occur in the upper water column of the ocean (< 1500 m). This study uses the distribution of particulate calcium from high-resolution suspended matter sampling along the Climate Variability and Predictability/CO2 Repeat Hydrography A16N transect in 2003 to estimate CaCO3 dissolution in the top 1000 m of the North Atlantic. Dissolution rates were also approximated using changes in total alkalinity measurements along isopycnal surfaces. Water masses were found to be undersaturated with respect to aragonite at intermediate depths (400–1000 m) in the eastern tropical North Atlantic. The CaCO3 dissolution rate in this region is estimated to be 0.9 mmol CaCO3 m−2 d−1, indicating this region is a hotspot for upper water column CaCO3 dissolution compared to the Atlantic basin as a whole. Dissolution rates calculated from particulate calcium distributions outside of this region were significantly lower (0.2 mmol CaCO3 m−2 d−1) and are comparable to previous estimates of CaCO3 dissolution flux for the Atlantic Ocean. The magnitude of upper water column dissolution rates compared to measured surface ocean CaCO3 standing stocks suggests that biologically mediated CaCO3 dissolution may be occurring in the top 1000 m of the Atlantic.


Global Biogeochemical Cycles | 2012

Global estimates of mineral dust aerosol iron and aluminum solubility that account for particle size using diffusion-controlled and surface-area-controlled approximations

Qin Han; Charles S. Zender; J. Keith Moore; Clifton S. Buck; Ying Chen; Anne M. Johansen; Christopher I. Measures

Mineral aerosol deposition is recognized as the dominant source of iron to the open ocean and the solubility of iron in the dust aerosol is highly variable, with measurements ranging from 0.01–80%. Global models have difficulty capturing the observed variations in solubility, and have ignored the solubility dependence on aerosol size. We introduce two idealized physical models to estimate the size dependence of mineral aerosol solubility: a diffusion-controlled model and a surface-area-controlled model. These models produce differing time- and space-varying solubility maps for aerosol Fe and Al given the dust age at deposition, size-resolved dust entrainment fields, and the aerosol acidity. The resulting soluble iron deposition fluxes are substantially different, and more realistic, than a globally uniform solubility approximation. The surface-area-controlled solubility varies more than the diffusion-controlled solubility and better captures the spatial pattern of observed solubility in the Atlantic. However, neither of these two models explains the large solubility variation observed in the Pacific. We then examine the impacts of spatially variable, size-dependent solubility on marine biogeochemistry with the Biogeochemical Elemental Cycling (BEC) ocean model by comparing the modeled surface ocean dissolved Fe and Al with observations. The diffusion-based variable solubility does not significantly improve the simulation of dissolved Fe relative to a 5% globally uniform solubility, while the surface-area-based variable solubility improves the simulation in the North Atlantic but worsens it in the Pacific and Indian Oceans.


Global Biogeochemical Cycles | 2015

Dissolved Fe and Al in the upper 1000 m of the eastern Indian Ocean: A high‐resolution transect along 95°E from the Antarctic margin to the Bay of Bengal

Maxime M. Grand; Christopher I. Measures; Mariko Hatta; William T. Hiscock; William M. Landing; Peter L. Morton; Clifton S. Buck; Pamela M. Barrett; Joseph A. Resing

A high-resolution section of dissolved iron (dFe) and aluminum (dAl) was obtained along ~95°E in the upper 1000?m of the eastern Indian Ocean from the Antarctic margin (66°S) to the Bay of Bengal (18°N) during the U.S. Climate Variability and Predictability (CLIVAR) CO2 Repeat Hydrography I08S and I09N sections (February–April 2007). In the Southern Ocean, low concentrations of dAl (


Environmental Science & Technology | 2015

Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries

Clifton S. Buck; Chad R. Hammerschmidt; Katlin L. Bowman; Gary A. Gill; William M. Landing

To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (~5200 mol y(-1)) and MeHg (~120 mol y(-1)) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM.


Marine Chemistry | 2010

The solubility and deposition of aerosol Fe and other trace elements in the North Atlantic Ocean: Observations from the A16N CLIVAR/CO2 repeat hydrography section

Clifton S. Buck; William M. Landing; Joseph A. Resing; Christopher I. Measures


Global Biogeochemical Cycles | 2008

High‐resolution Al and Fe data from the Atlantic Ocean CLIVAR‐CO2 Repeat Hydrography A16N transect: Extensive linkages between atmospheric dust and upper ocean geochemistry

Christopher I. Measures; William M. Landing; Matthew T. Brown; Clifton S. Buck

Collaboration


Dive into the Clifton S. Buck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge