Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clint Mitchell is active.

Publication


Featured researches published by Clint Mitchell.


Cancer Research | 2009

Targeting Sphingosine Kinase 1 Inhibits Akt Signaling, Induces Apoptosis, and Suppresses Growth of Human Glioblastoma Cells and Xenografts

Dmitri Kapitonov; Jeremy C. Allegood; Clint Mitchell; Nitai C. Hait; Jorge A. Almenara; Jeffrey Kroll Adams; Robert Elliot Zipkin; Paul Dent; Tomasz Kordula; Sheldon Milstien; Sarah Spiegel

Sphingosine-1-phosphate is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce sphingosine-1-phosphate, is up-regulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and nonestablished human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of extracellular signal-regulated kinase 1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the c-Jun-NH(2)-kinase pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced the tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization, and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease.


Cancer Biology & Therapy | 2008

Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation

Margaret A. Park; Guo Zhang; Aditi Pandya Martin; Hossein A. Hamed; Clint Mitchell; Philip B. Hylemon; Martin R. Graf; Mohamed Rahmani; Kevin M. Ryan; Xiang Liu; Sarah Spiegel; James S. Norris; Paul B. Fisher; Steven Grant; Paul Dent

We recently noted that low doses of sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I trials. The present studies mechanistically extended our initial observations. Low doses of sorafenib and vorinostat, but not the individual agents, caused an acidic sphingomyelinase and fumonisin B1-dependent increase in CD95 surface levels and CD95 association with caspase 8. Knock down of CD95 or FADD expression reduced sorafenib/vorinostat lethality. Signaling by CD95 caused PERK activation that was responsible for both promoting caspase 8 association with CD95 and for increased eIF2α phosphorylation; suppression of eIF2α function abolished drug combination lethality. Cell killing was paralleled by PERK- and eIF2α-dependent lowering of c-FLIP-s protein levels and overexpression of c-FLIP-s maintained cell viability. In a CD95-, FADD- and PERK-dependent fashion, sorafenib and vorinostat increased expression of ATG5 that was responsible for enhanced autophagy. Expression of PDGFRβ and FLT3 were essential for high dose single agent sorafenib treatment to promote autophagy. Suppression of PERK function reduced sorafenib and vorinostat lethality whereas suppression of ATG5 levels elevated sorafenib and vorinostat lethality. Overexpression of c-FLIP-s blocked apoptosis and enhanced drug-induced autophagy. Thus sorafenib and vorinostat promote ceramide-dependent CD95 activation followed by induction of multiple downstream survival regulatory signals: ceramide-CD95-PERK-FADD-pro-caspase 8 (death); ceramide-CD95-PERK-eIF2α-↓c-FLIP-s (death); ceramide-CD95-PERK-ATG5-autophagy (survival).


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction

Anindita Das; David Durrant; Clint Mitchell; Eric Mayton; Nicholas N. Hoke; Fadi N. Salloum; Margaret A. Park; Ian Z. Qureshi; Ray M. Lee; Paul Dent; Rakesh C. Kukreja

We have shown that the potent phosphodiesterase-5 (PDE-5) inhibitor sildenafil (Viagra) induces a powerful effect on reduction of infarct size following ischemia/reperfusion injury and improvement of left ventricular dysfunction in the failing heart after myocardial infarction or doxorubicin (DOX) treatment. In the present study, we further investigated the potential effects of sildenafil on improving antitumor efficacy of DOX in prostate cancer. Cotreatment with sildenafil enhanced DOX-induced apoptosis in PC-3 and DU145 prostate cancer cells, which was mediated by enhanced generation of reactive oxygen species, up-regulation of caspase-3 and caspase-9 activities, reduced expression of Bcl-xL, and phosphorylation of Bad. Overexpression of Bcl-xL or dominant negative caspase 9 attenuated the synergistic effect of sildenafil and DOX on prostate cancer cell killing. Furthermore, treatment with sildenafil and DOX in mice bearing prostate tumor xenografts resulted in significant inhibition of tumor growth. The reduced tumor size was associated with amplified apoptotic cell death and increased expression of activated caspase 3. Doppler echocardiography showed that sildenafil treatment ameliorated DOX-induced left ventricular dysfunction. In conclusion, these results provide provocative evidence that sildenafil is both a powerful sensitizer of DOX-induced killing of prostate cancer while providing concurrent cardioprotective benefit.


Cancer Biology & Therapy | 2003

mda-7 (IL-24) Inhibits Growth and Enhances Radiosensitivity of Glioma Cells In Vitro via JNK Signaling

Adly Yacoub; Clint Mitchell; Irina V. Lebedeva; Devanand Sarkar; Zao-zhong Su; Robert C. McKinstry; Rahul V. Gopalkrishnan; Steven Grant; Paul B. Fisher; Paul Dent

Despite therapeutic interventions including surgery, chemotherapy and radiotherapy, glioblastoma multiforme (GBM) has a very poor prognosis and novel therapies are required. MDA-7 (IL-24), when expressed via a recombinant replication defective adenovirus, Ad.mda-7, has profound anti-proliferative and cytotoxic effects in a variety of tumor cells, but not in non-transformed cells. The present studies examined the combined impact of Ad.mda-7 and ionizing radiation on the proliferation and survival of GBM cells. Ad.mda-7 reduced the proliferation of rodent and human glioma cells in MTT assays and in colony formation assays. The anti-proliferative effects of Admda-7 were enhanced by radiation in a greater than additive fashion. In vitro, this cellular change correlated with enhanced cell numbers in G1/G0 and G2/M phases of the cell cycle, implying Ad.mda-7 radiosensitizes tumor cells in a cell cycle-independent manner. The radiosensitizing effects were not observed in cultures of non-transformed primary astrocytes. The enhanced reduction in growth correlated with increased necrosis and DNA degradation. Ad.mda-7 enhanced p38 and ERK1/2 activity but did not alter JNK or Akt activity. Irradiation of cells expressing MDA-7 suppressed ERK1/2 activity and dramatically enhanced JNK1/2 activity without altering either Akt or p38 activity. Inhibition of JNK1/2, but not p38, signaling abolished the radiosensitizing properties of MDA-7. Inhibition of neither ERK1/2 nor PI3K signaling enhanced the anti-proliferative effects of Ad.mda-7, whereas combined inhibition of both pathways enhanced cell killing, suggesting that ERK and PI3K signaling can be protective against MDA-7 lethality.


Cancer Biology & Therapy | 2009

Inhibition of MCL-1 enhances lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy

Aditi Pandya Martin; Clint Mitchell; Mohammed Rahmani; Kenneth P. Nephew; Steven Grant; Paul Dent

Prior studies demonstrated that resistance to the ERBB1/2 inhibitor Lapatinib in HCT116 cells was mediated by increased MCL-1 expression. We examined whether inhibition of BCL-2 family function could restore Lapatinib toxicity in Lapatinib adapted tumor cells and enhance Lapatinib toxicity in naive cells. The BCL-2 family antagonist Obatoclax (GX15-070), that inhibits BCL-2/BCL-XL/MCL-1 function, enhanced Lapatinib toxicity in parental HCT116 and Lapatinib adapted HCT116 cells. In breast cancer lines, regardless of elevated ERBB1/2 expression, GX15-070 enhanced Lapatinib toxicity within 3-12h. The promotion of Lapatinib toxicity neither correlated with cleavage of caspase 3 nor was blocked by inhibition caspases; and was not associated with changes in the activities of ERK1/2, JNK1/2 or p38 MAPK but with reduced AKT, mTOR and S6K1 phosphorylation. The promotion of Lapatinib toxicity by GX15-070 correlated with increased cytosolic levels of apoptosis inducing factor (AIF) and expression of ATG8 (LC3), and the formation of large vesicles that intensely stained for a transfected LC3-GFP construct. Knock down of the autophagy regulatory proteins ATG5 or Beclin1 suppressed the induction of LC3-GFP vesicularization and significantly reduced cell killing, whereas knock down of MCL-1 and BCL-XL enhanced the induction of LC3-GFP vesicularization and significantly enhanced cell killing. Knock down of Beclin1 and AIF abolished cell killing. Collectively, our data demonstrate that Obatoclax mediated inhibition of MCL-1 rapidly enhances Lapatinib toxicity in tumor cells via a toxic form of autophagy and via AIF release from the mitochondrion.


Molecular Pharmacology | 2006

OSU-03012 promotes caspase-independent but PERK-, cathepsin B-, BID-, and AIF-dependent killing of transformed cells.

Adly Yacoub; Margaret A. Park; David Hanna; Young Hong; Clint Mitchell; Aditi P Pandya; Hisashi Harada; Garth Powis; Ching-Shi Chen; Costas Koumenis; Steven Grant; Paul Dent

We determined one mechanism by which the putative phosphoinositide-dependent kinase (PDK)-1 inhibitor 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl}acetamide (OSU-03012) killed primary human glioma and other transformed cells. OSU-03012 caused a dose-dependent induction of cell death that was not altered by p53 mutation, expression of ERBB1 vIII, or loss of phosphatase and tensin homolog deleted on chromosome 10 function. OSU-03012 promoted cell killing to a greater extent in glioma cells than in nontransformed astrocytes. OSU-03012 and ionizing radiation caused an additive, caspase-independent elevation in cell killing in 96-h viability assays and true radiosensitization in colony formation assays. In a cell type-specific manner, combined exposure to OSU-03012 with a mitogen-activated protein kinase kinase 1/2 inhibitor, phosphoinositide 3-kinase/AKT inhibitors, or parallel molecular interventions resulted in a greater than additive induction of cell killing that was independent of AKT activity and caspase function. OSU-03012 lethality as a single agent or when combined with signaling modulators was not modified in cells lacking expression of BIM or of BAX/BAK. OSU-03012 promoted the release of cathepsin B from the lysosomal compartment and release of AIF from mitochondria. Loss of BH3-interacting domain (BID) function, overexpression of BCLXL, and inhibition of cathepsin B function suppressed cell killing and apoptosis-inducing factor (AIF) release from mitochondria. In protein kinase R-like endoplasmic reticulum kinase-/- cells, the lethality of OSU-03012 was attenuated which correlated with reduced cleavage of BID and with suppression of cathepsin B and AIF release into the cytosol. Our data demonstrate that OSU-03012 promotes glioma cell killing that is dependent on endoplasmic reticulum stress, lysosomal dysfunction, and BID-dependent release of AIF from mitochondria, and whose lethality is enhanced by irradiation or by inhibition of protective signaling pathways.


Cancer Biology & Therapy | 2004

MDA-7 regulates cell growth and radiosensitivity in vitro of primary (Non-Established) human glioma cells

Adly Yacoub; Clint Mitchell; Young Hong; Rahul V. Gopalkrishnan; Zhao Zhong Su; Pankaj Gupta; Moria Sauane; Irina V. Lebedeva; David T. Curiel; Parameshwar J. Mahasreshti; Myrna R. Rosenfeld; William C. Broaddus; C. David James; Steven Grant; Paul B. Fisher; Paul Dent

We examined the impact of purified bacterially synthesized GST-MDA-7 (IL-24) and ionizing radiation on the proliferation and survival of non-established human glioblastoma multiforme (GBM) cells. Glioma cell types expressing mutated PTEN and p53 molecules, activated ERBB1VIII, over-expressing wild type ERBB1 or without receptor over-expression were selected. In MTT assays, GST-MDA-7 caused a dose-dependent reduction in the proliferation of non-established glioma cells; however only at higher concentrations did GST-MDA-7 reduce cell viability. The anti-proliferative and cytotoxic effects of GST-MDA-7 were enhanced by radiation in a greater than additive fashion that correlated with JNK1/2/3 activation. The reduction in cell growth and enhancement in cell killing by the combination of GST-MDA-7 and radiation were blocked by an ROS scavenger, N-acetyl cysteine (NAC), a JNK1/2/3 inhibitor SP600125, a pan-caspase inhibitor (zVAD) and by an inhibitor of caspase 9 (LEHD), but not by an inhibitor of caspase 8 (IETD). Low concentrations of either GST-MDA-7 or radiation reduced clonogenic survival, however colony formation ability was significantly further decreased when the two treatments were combined, which was also blocked by inhibition of caspase 9 function. In general agreement with activation of the intrinsic caspase pathway, cell death correlated with reduced BCL-XL expression and with increased levels of the pro-apoptotic proteins BAD and BAX. Inhibition of caspase 9 after combination treatment blunted neither JNK1/2/3 activation nor the enhanced expression of BAD and BAX, but did block caspase 3 cleavage, reduced expression of BCL-XL and inhibition of ERK1/2 activity. In contrast, incubation with NAC blocked JNK1/2/3 activation and cell killing, but not the increases in BAD and BAX expression. These findings argue that after combination treatment JNK1/2/3 activation is a primary pro-apoptotic event and loss of BCL-XL expression and ERK1/2 activity are secondary caspase-dependent processes. This data also argues that GST-MDA-7 induces two parallel pro-apoptotic pathways via ROS-dependent and -independent mechanisms. Infection of primary human astrocytes with a recombinant adenovirus to express MDA-7, Ad.mda-7, but not infection with either Ad.cmv or Ad.mda-7SP- lacking MDA-7 secretion, resulted in the suppression of GBM cell colony formation in soft agar overlay assays, an effect that was enhanced in a greater than additive fashion by radiation. Collectively, our findings demonstrate that MDA-7 reduces proliferation and enhances the radiosensitivity of non-established human GBM cells in vitro, and when grown in 3 dimensions, and that sensitization occurs independently of basal EGFR / ERK1/2 / AKT activity or the functions of PTEN and p53.


Molecular Pharmacology | 2009

BCL-2 Family Inhibitors Enhance Histone Deacetylase Inhibitor and Sorafenib Lethality via Autophagy and Overcome Blockade of the Extrinsic Pathway to Facilitate Killing

Aditi Pandya Martin; Margaret A. Park; Clint Mitchell; Teneille Walker; Mohamed Rahmani; Andrew Thorburn; Dieter Häussinger; Roland Reinehr; Steven Grant; Paul Dent

We examined whether the multikinase inhibitor sorafenib and histone deacetylase inhibitors (HDACI) interact to kill pancreatic carcinoma cells and determined the impact of inhibiting BCL-2 family function on sorafenib and HDACI lethality. The lethality of sorafenib was enhanced in pancreatic tumor cells in a synergistic fashion by pharmacologically achievable concentrations of the HDACIs vorinostat or sodium valproate. Overexpression of cellular FLICE-like inhibitory protein (c-FLIP-s) or knockdown of CD95 suppressed the lethality of the sorafenib/HDACI combination (sorafenib + HDACI). In immunohistochemical analyses or using expression of fluorescence-tagged proteins, treatment with sorafenib and vorinostat together (sorafenib + vorinostat) promoted colocalization of CD95 with caspase 8 and CD95 association with the endoplasmic reticulum markers calnexin, ATG5, and Grp78/BiP. In cells lacking CD95 expression or in cells expressing c-FLIP-s, the lethality of sorafenib + HDACI exposure was abolished and was restored when cells were coexposed to BCL-2 family inhibitors [ethyl [2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)]-4H-chromene-3-carboxylate (HA14-1), obatoclax (GX15-070)]. Knockdown of BCL-2, BCL-XL, and MCL-1 recapitulated the effects of GX15-070 treatment. Knockdown of BAX and BAK modestly reduced sorafenib + HDACI lethality but abolished the effects of GX15-070 treatment. Sorafenib + HDACI exposure generated a CD95- and Beclin1-dependent protective form of autophagy, whereas GX15-070 treatment generated a Beclin1-dependent toxic form of autophagy. The potentiation of sorafenib + HDACI killing by GX15-070 was suppressed by knockdown of Beclin1 or of BAX + BAK. Our data demonstrate that pancreatic tumor cells are susceptible to sorafenib + HDACI lethality and that in tumor cells unable to signal death from CD95, use of a BCL-2 family antagonist facilitates sorafenib + HDACI killing via autophagy and the intrinsic pathway.


Cancer Research | 2010

PERK-Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24-Induced Killing of Primary Human Glioblastoma Multiforme Cells

Adly Yacoub; Hossein A. Hamed; Jeremy C. Allegood; Clint Mitchell; Sarah Spiegel; Maciej S. Lesniak; Besim Ogretmen; Rupesh Dash; Devanand Sarkar; William C. Broaddus; Steven Grant; David T. Curiel; Paul B. Fisher; Paul Dent

Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R-like endoplasmic reticulum kinase (PERK), Ca(++) elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca(++) induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7-killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca(2+), and ROS, which in turn promote glioma cell autophagy and cell death.


Clinical Cancer Research | 2008

Vorinostat and Sorafenib Synergistically Kill Tumor Cells via FLIP Suppression and CD95 Activation

Guo Zhang; Margaret A. Park; Clint Mitchell; Hossein A. Hamed; Mohammed Rahmani; Aditi Pandya Martin; David T. Curiel; Adly Yacoub; Martin R. Graf; Ray Lee; John D. Roberts; Paul B. Fisher; Steven Grant; Paul Dent

Purpose and Design: Mechanism(s) by which the multikinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat interact to kill hepatic, renal, and pancreatic adenocarcinoma cells has been defined. Results: Low doses of sorafenib and vorinostat interacted in vitro in a synergistic fashion to kill hepatic, renal, and pancreatic adenocarcinoma cells in multiple short-term viability (24-96 h) and in long-term colony formation assays. Cell killing was suppressed by inhibition of cathepsin proteases and caspase-8 and, to a lesser extent, by inhibition of caspase-9. Twenty-four hours after exposure, the activities of extracellular signal-regulated kinase 1/2, AKT, and nuclear factor-κB were only modestly modulated by sorafenib and vorinostat treatment. However, 24 h after exposure, sorafenib- and vorinostat-treated cells exhibited markedly diminished expression of c-FLIP-s, full-length BID, BCL-2, BCL-XL, MCL-1, XIAP, increased expression of BIM, and increased activation of BAX, BAK, and BAD. Expression of eIF2α S51A blocked sorafenib- and vorinostat-induced suppression of c-FLIP-s levels and overexpression of c-FLIP-s abolished lethality. Sorafenib and vorinostat treatment increased surface levels of CD95 and CD95 association with caspase-8. Knockdown of CD95 or FADD expression significantly reduced sorafenib/vorinostat-mediated lethality. Conclusions: These data show that combined exposure of epithelial tumor cell types to sorafenib and vorinostat diminishes expression of multiple antiapoptotic proteins and promotes activation of the CD95 extrinsic apoptotic and the lysosomal protease pathways, and that suppression of c-FLIP-s expression represents a critical event in transduction of the proapoptotic signals from CD95 to promote mitochondrial dysfunction and death.

Collaboration


Dive into the Clint Mitchell's collaboration.

Top Co-Authors

Avatar

Paul Dent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adly Yacoub

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret A. Park

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Hossein A. Hamed

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

David T. Curiel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michael P. Hagan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Aditi Pandya Martin

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Guo Zhang

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge