Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clinton S. Robbins is active.

Publication


Featured researches published by Clinton S. Robbins.


Nature | 2012

Myocardial infarction accelerates atherosclerosis

Partha Dutta; Gabriel Courties; Ying Wei; Florian Leuschner; Rostic Gorbatov; Clinton S. Robbins; Yoshiko Iwamoto; Brian Thompson; Alicia L. Carlson; Timo Heidt; Maulik D. Majmudar; Felix Lasitschka; Martin Etzrodt; Peter G. Waterman; Michael T. Waring; Adam T. Chicoine; Anja M. van der Laan; Hans W.M. Niessen; Jan J. Piek; Barry B. Rubin; Jagdish Butany; James R. Stone; Hugo A. Katus; Sabina A. Murphy; David A. Morrow; Marc S. Sabatine; Claudio Vinegoni; Michael A. Moskowitz; Mikael J. Pittet; Peter Libby

During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.


Nature Medicine | 2013

Local proliferation dominates lesional macrophage accumulation in atherosclerosis

Clinton S. Robbins; Ingo Hilgendorf; Georg F. Weber; Igor Theurl; Yoshiko Iwamoto; Jose-Luiz Figueiredo; Rostic Gorbatov; Galina K. Sukhova; Louisa M.S. Gerhardt; David Smyth; Caleb C. J. Zavitz; Eric A. Shikatani; Michael Parsons; Nico van Rooijen; Herbert Y. Lin; Mansoor Husain; Peter Libby; Matthias Nahrendorf; Ralph Weissleder; Filip K. Swirski

During the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts. We therefore revisited the mechanism underlying macrophage accumulation in atherosclerosis. In murine atherosclerotic lesions, we found that macrophages turn over rapidly, after 4 weeks. Replenishment of macrophages in these experimental atheromata depends predominantly on local macrophage proliferation rather than monocyte influx. The microenvironment orchestrates macrophage proliferation through the involvement of scavenger receptor A (SR-A). Our study reveals macrophage proliferation as a key event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for cardiovascular disease.


Journal of Experimental Medicine | 2012

Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis

Florian Leuschner; Philipp J. Rauch; Takuya Ueno; Rostic Gorbatov; Brett Marinelli; Won Woo Lee; Partha Dutta; Ying Wei; Clinton S. Robbins; Yoshiko Iwamoto; Brena Sena; Aleksey Chudnovskiy; Peter Panizzi; Edmund J. Keliher; John M. Higgins; Peter Libby; Michael A. Moskowitz; Mikael J. Pittet; Filip K. Swirski; Ralph Weissleder; Matthias Nahrendorf

IL-1b signaling augments continued splenic monocyte supply during acute inflammation.


Science | 2012

Innate Response Activator B Cells Protect Against Microbial Sepsis

Philipp J. Rauch; Aleksey Chudnovskiy; Clinton S. Robbins; Georg F. Weber; Martin Etzrodt; Ingo Hilgendorf; Elizabeth Tiglao; Jose-Luiz Figueiredo; Yoshiko Iwamoto; Igor Theurl; Rostic Gorbatov; Michael T. Waring; Adam T. Chicoine; Majd Mouded; Mikael J. Pittet; Matthias Nahrendorf; Ralph Weissleder; Filip K. Swirski

Immune Sentinels A classic paradigm in immunology holds that the immune response occurs in two waves: Rapidly responding cells of the innate immune system help to contain the invading pathogen and alert lymphocytes. These cells of the adaptive immune system then help to clear the infection and go on to form long-lasting memory. However, some specialized populations of lymphocytes can also respond quickly to an infection and carry out functions that overlap with the innate immune system. Now, Rauch et al. (p. 597, published online 12 January) describe one such cell type—innate response activator (IRA) B cells. IRA B cells recognize bacterial liposaccharide through Toll-like receptor 4 and, in response, produce the cytokine GM-CSF, which activates other innate immune cells. Deletion of IRA B cells in mice impaired their ability to clear a bacterial infection and promoted septic shock. A specialized population of B lymphocytes is important for controlling bacterial infections and preventing sepsis. Recognition and clearance of a bacterial infection are a fundamental properties of innate immunity. Here, we describe an effector B cell population that protects against microbial sepsis. Innate response activator (IRA) B cells are phenotypically and functionally distinct, develop and diverge from B1a B cells, depend on pattern-recognition receptors, and produce granulocyte-macrophage colony-stimulating factor. Specific deletion of IRA B cell activity impairs bacterial clearance, elicits a cytokine storm, and precipitates septic shock. These observations enrich our understanding of innate immunity, position IRA B cells as gatekeepers of bacterial infection, and identify new treatment avenues for infectious diseases.


Nature | 2009

Macrophage elastase kills bacteria within murine macrophages

A. McGarry Houghton; William O. Hartzell; Clinton S. Robbins; F. Xavier Gomis-Rüth; Steven D. Shapiro

Macrophages are aptly positioned to function as the primary line of defence against invading pathogens in many organs, including the lung and peritoneum. Their ability to phagocytose and clear microorganisms has been well documented. Macrophages possess several substances with which they can kill bacteria, including reactive oxygen species, nitric oxide, and antimicrobial proteins. We proposed that macrophage-derived proteinases may contribute to the antimicrobial properties of macrophages. Macrophage elastase (also known as matrix metalloproteinaseu200912 or MMP12) is an enzyme predominantly expressed in mature tissue macrophages and is implicated in several disease processes, including emphysema. Physiological functions for MMP12 have not been described. Here we show that Mmp12-/- mice exhibit impaired bacterial clearance and increased mortality when challenged with both Gram-negative and Gram-positive bacteria at macrophage-rich portals of entry, such as the peritoneum and lung. Intracellular stores of MMP12 are mobilized to macrophage phagolysosomes after the ingestion of bacterial pathogens. Once inside phagolysosomes, MMP12 adheres to bacterial cell walls where it disrupts cellular membranes resulting in bacterial death. The antimicrobial properties of MMP12 do not reside within its catalytic domain, but rather within the carboxy-terminal domain. This domain contains a unique four amino acid sequence on an exposed β loop of the protein that is required for the observed antimicrobial activity. The present study represents, to our knowledge, the first report of direct antimicrobial activity by a matrix metallopeptidase, and describes a new antimicrobial peptide that is sequentially and structurally unique in nature.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Detection of Macrophages in Aortic Aneurysms by Nanoparticle Positron Emission Tomography–Computed Tomography

Matthias Nahrendorf; Edmund J. Keliher; Brett Marinelli; Florian Leuschner; Clinton S. Robbins; Robert E. Gerszten; Mikael J. Pittet; Filip K. Swirski; Ralph Weissleder

Objective—Current management of aortic aneurysms (AAs) relies primarily on size criteria to determine whether invasive repair is indicated to preempt rupture. We hypothesized that emerging molecular imaging tools could be used to more sensitively gauge local inflammation. Because macrophages are key effector cells that destabilize the extracellular matrix in the arterial wall, it seemed likely that they would represent suitable imaging targets. We here aimed to develop and validate macrophage-targeted nanoparticles labeled with fluorine-18 (18F) for positron emission tomography–computed tomography (PET-CT) detection of inflammation in AAs. Methods and Results—Aneurysms were induced in apolipoprotein E−/− mice via systemic administration of angiotensin II. Mice were imaged using PET-CT and a monocyte/macrophage–targeted nanoparticle. AAs were detected by contrast-enhanced micro-CT and had a mean diameter of 1.85±0.08 mm, whereas normal aortas measured 1.07±0.03 (P<0.05). The in vivo PET signal was significantly higher in aneurysms (standard uptake value, 2.46±0.48) compared with wild-type aorta (0.82±0.05, P<0.05). Validation with scintillation counting, autoradiography, fluorescence, and immunoreactive histology and flow cytometry demonstrated that nanoparticles localized predominantly to monocytes and macrophages within the aneurysmatic wall. Conclusion—PET-CT imaging with 18F-labeled nanoparticles allows quantitation of macrophage content in a mouse model of AA.


Cellular and Molecular Life Sciences | 2010

The multiple roles of monocyte subsets in steady state and inflammation

Clinton S. Robbins; Filip K. Swirski

Monocytes participate importantly in immunity. Produced in the bone marrow and released into the blood, they circulate in blood or reside in a spleen reservoir before entering tissue and giving rise to macrophages or dendritic cells. Monocytes are more than transitional cells that adapt to a particular tissue environment indiscriminately. Accumulating evidence now indicates that monocytes are heterogeneous in several species and are themselves predetermined for particular function in the steady state and inflammation. Future therapeutics may harness this heterogeneity to target harmful functions while sparing those that are beneficial. Here, we review recent advances on the ontogeny and function of monocytes and their subsets in humans and mice.


Journal of Immunology | 2008

Cigarette smoke exposure impairs dendritic cell maturation and T cell proliferation in thoracic lymph nodes of mice.

Clinton S. Robbins; Francesca Franco; Majd Mouded; Manuela Cernadas; Steven D. Shapiro

Respiratory tract dendritic cells (DCs) are juxtaposed to directly sample inhaled environmental particles. Processing and presentation of these airborne Ags could result in either the development of immunity or tolerance. The purpose of this study was to determine the consequences of cigarette smoke exposure on DC function in mice. We demonstrate that while cigarette smoke exposure decreased the number of DCs in the lungs, Ag-induced DC migration to the regional thoracic lymph nodes was unaffected. However, cigarette smoking suppressed DC maturation within the lymph nodes as demonstrated by reduced cell surface expression of MHC class II and the costimulatory molecules CD80 and CD86. Consequently, DCs from cigarette smoke-exposed animals had a diminished capacity to induce IL-2 production by T cells that was associated with diminished Ag-specific T cell proliferation in vivo. Smoke-induced defects in DC function leading to impaired CD4+ T cell function could inhibit tumor surveillance and predispose patients with chronic obstructive pulmonary disease to infections and exacerbations.


Journal of Experimental Medicine | 2014

Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis

Georg F. Weber; Benjamin G. Chousterman; Ingo Hilgendorf; Clinton S. Robbins; Igor Theurl; Louisa M.S. Gerhardt; Yoshiko Iwamoto; Tam D. Quach; Muhammad Ali; John W. Chen; Thomas L. Rothstein; Matthias Nahrendorf; Ralph Weissleder; Filip K. Swirski

In response to lung infection, pleural innate response activator B cells produce GM-CSF–dependent IgM and ensure a frontline defense against bacterial invasion.


Circulation | 2014

Innate Response Activator B Cells Aggravate Atherosclerosis by Stimulating T Helper-1 Adaptive Immunity

Ingo Hilgendorf; Igor Theurl; Louisa M.S. Gerhardt; Clinton S. Robbins; Georg F. Weber; Ayelet Gonen; Yoshiko Iwamoto; Norbert Degousee; Tobias A. W. Holderried; Carla Winter; Andreas Zirlik; Herbert Y. Lin; Galina K. Sukhova; Jagdish Butany; Barry B. Rubin; Joseph L. Witztum; Peter Libby; Matthias Nahrendorf; Ralph Weissleder; Filip K. Swirski

Background— Atherosclerotic lesions grow via the accumulation of leukocytes and oxidized lipoproteins in the vessel wall. Leukocytes can attenuate or augment atherosclerosis through the release of cytokines, chemokines, and other mediators. Deciphering how leukocytes develop, oppose, and complement each other’s function and shape the course of disease can illuminate our understanding of atherosclerosis. Innate response activator (IRA) B cells are a recently described population of granulocyte macrophage colony-stimulating factor–secreting cells of hitherto unknown function in atherosclerosis. Methods and Results— Here, we show that IRA B cells arise during atherosclerosis in mice and humans. In response to a high-cholesterol diet, IRA B cell numbers increase preferentially in secondary lymphoid organs via Myd88-dependent signaling. Mixed chimeric mice lacking B cell–derived granulocyte macrophage colony-stimulating factor develop smaller lesions with fewer macrophages and effector T cells. Mechanistically, IRA B cells promote the expansion of classic dendritic cells, which then generate interferon &ggr;–producing T helper-1 cells. This IRA B cell–dependent T helper-1 skewing manifests in an IgG1-to-IgG2c isotype switch in the immunoglobulin response against oxidized lipoproteins. Conclusions— Granulocyte macrophage colony-stimulating factor–producing IRA B cells alter adaptive immune processes and shift the leukocyte response toward a T helper-1–associated milieu that aggravates atherosclerosis.

Collaboration


Dive into the Clinton S. Robbins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Libby

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge