Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clinton W. Epps is active.

Publication


Featured researches published by Clinton W. Epps.


BioScience | 2009

The Rise of the Mesopredator

Laura R. Prugh; Chantal J. Stoner; Clinton W. Epps; William T. Bean; William J. Ripple; Andrea S. Laliberte; Justin S. Brashares

Apex predators have experienced catastrophic declines throughout the world as a result of human persecution and habitat loss. These collapses in top predator populations are commonly associated with dramatic increases in the abundance of smaller predators. Known as “mesopredator release,” this trophic interaction has been recorded across a range of communities and ecosystems. Mesopredator outbreaks often lead to declining prey populations, sometimes destabilizing communities and driving local extinctions. We present an overview of mesopredator release and illustrate how its underlying concepts can be used to improve predator management in an increasingly fragmented world. We also examine shifts in North American carnivore ranges during the past 200 years and show that 60% of mesopredator ranges have expanded, whereas all apex predator ranges have contracted. The need to understand how best to predict and manage mesopredator release is urgent—mesopredator outbreaks are causing high ecological, economic, and social costs around the world.


Molecular Ecology | 2015

Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change

Clinton W. Epps; Nusha Keyghobadi

Landscape genetics seeks to determine the effect of landscape features on gene flow and genetic structure. Often, such analyses are intended to inform conservation and management. However, depending on the many factors that influence the time to reach equilibrium, genetic structure may more strongly represent past rather than contemporary landscapes. This well‐known lag between current demographic processes and population genetic structure often makes it challenging to interpret how contemporary landscapes and anthropogenic activity shape gene flow. Here, we review the theoretical framework for factors that influence time lags, summarize approaches to address this temporal disconnect in landscape genetic studies, and evaluate ways to make inferences about landscape change and its effects on species using genetic data alone or in combination with other data. Those approaches include comparing correlation of genetic structure with historical versus contemporary landscapes, using molecular markers with different rates of evolution, contrasting metrics of genetic structure and gene flow that reflect population genetic processes operating at different temporal scales, comparing historical and contemporary samples, combining genetic data with contemporary estimates of species distribution or movement, and controlling for phylogeographic history. We recommend using simulated data sets to explore time lags in genetic structure, and argue that time lags should be explicitly considered both when designing and interpreting landscape genetic studies. We conclude that the time lag problem can be exploited to strengthen inferences about recent landscape changes and to establish conservation baselines, particularly when genetic data are combined with other data.


Molecular Ecology | 2006

Elevation and connectivity define genetic refugia for mountain sheep as climate warms

Clinton W. Epps; Per J. Palsbøll; John D. Wehausen; George K. Roderick; Dale R. McCullough

Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low‐elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher‐elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert‐adapted ungulate.


Animal Conservation | 2005

Genetic relatedness of the Preble's meadow jumping mouse (Zapus hudsonius preblei) to nearby subspecies of Z. hudsonius as inferred from variation in cranial morphology, mitochondrial DNA and microsatellite DNA: implications for taxonomy and conservation

Rob Roy Ramey; Hsiu-Ping Liu; Clinton W. Epps; Lance M. Carpenter; John D. Wehausen

The Preble’s meadow jumping mouse (Zapus hudsonius preblei) is listed as a threatened subspecies under the United States Endangered Species Act (US-ESA). The quantitative description of this subspecies was based on cranial measurements of only three adult specimens. It is one of twelve subspecies of Z. hudsonius and is a peripheral population at the western edge of its range. We tested the uniqueness of Z. h. preblei relative to other nearby subspecies of Z. hudsonius using a hypothesis testing approach and analyses of cranial morphometric, mtDNA sequence and nuclear microsatellite data obtained from museum specimens and archived tissues. Morphometric analysis of variance did not support the original description of Z. h. preblei as a subspecies. Principal component analysis of these data showed Z. h. preblei within the range of variation found in Z. h. campestris and Z. h. intermedius. Discriminant analysis correctly classified only 42% of Z. h. preblei skulls at jackknifed posterior probabilities >0.95 relative to Z. h. campestris. All mtDNA haplotypes found in Z. h. preblei were also found in Z. h. campestris. Simulation based estimates of current and historical gene flow (MDIV) revealed low, but non-zero, mtDNA gene flow among Z. h. preblei and several nearby subspecies. Analyses of five nuclear microsatellite loci using population pairwise FST, BAPS and STRUCTURE were consistent with morphometric and mtDNA results. These revealed low levels of genetic structure and evidence of recent gene flow and bottlenecks inZ.h.preblei. Due to a lack of clearly recognisable genetic, morphological, or adaptive differences, we synonymise Z. h. preblei and Z. h. intermedius with Z. h. campestris. We suggest that candidates for listing under the US-ESA, or similar biodiversity laws, be evaluated for genetic and/or morphological uniqueness to prevent the misallocation of resources to non-distinct taxa like Z. h. preblei.


Conservation Biology | 2010

Potential Effects of the United States-Mexico Border Fence on Wildlife

Aaron D. Flesch; Clinton W. Epps; James W. Cain; Matt Clark; Paul R. Krausman; John R. Morgart

Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.-Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls (Glaucidium brasilianum), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep (Ovis canadensis mexicana). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance (p < or = 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for F(ST)=0.010-0.115, Nm = 1.9-24.8, M =10.4-15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.


Journal of Wildlife Management | 2010

Using genetic tools to track desert bighorn sheep colonizations

Clinton W. Epps; John D. Wehausen; Per J. Palsbøll; Dale R. McCullough

Abstract Understanding colonization is vital for managing fragmented populations. We employed mitochondrial DNA haplotypes and 14 microsatellite (nuclear DNA) markers to infer the origins of newly established populations of desert bighorn sheep (Ovis canadensis nelsoni) and to assess loss of genetic diversity during natural colonizations. We used haplotype distribution, F-statistics, Bayesian population clustering, and assignment tests to infer source populations for 3 recent colonies and identified a previously undetected colonization from multiple source populations. Allelic richness declined in 3 of 4 colonies in comparison to the primary source populations, but not as much as has been reported for translocated populations. Heterozygosity declined in only one colony. We also demonstrated that both native and translocated desert bighorn sheep have naturally recolonized empty habitats and suggest that colonization may partially offset population extinction in the region as long as connectivity is maintained. Genetic techniques and mitochondrial DNA haplotypes we described will allow managers to determine the origins of future colonizations by bighorn sheep in California, USA, and prioritize protection of linkages between known sources and colonies.


Landscape Ecology | 2015

Experimental evidence that simplified forest structure interacts with snow cover to influence functional connectivity for Pacific martens

Katie M. Moriarty; Clinton W. Epps; Matthew G. Betts; Dalton J. Hance; John D. Bailey; William J. Zielinski

ContextFunctional connectivity—the facilitation of individual movements among habitat patches—is essential for species’ persistence in fragmented landscapes. Evaluating functional connectivity is critical for predicting range shifts, developing conservation plans, and anticipating effects of disturbance, especially for species affected by climate change.ObjectivesWe examined whether simplifying forest structure influenced animal movements and whether an experimental approach to quantifying functional connectivity reflects normal behavior, which is often assumed but remains untested.MethodsWe evaluated functional connectivity for Pacific marten (Martes caurina) across a gradient in forest structural complexity using two novel methods for this species: incentivized food-titration experiments and non-incentivized locations collected via GPS telemetry (24 individuals).ResultsFood titration experiments revealed martens selected complex stands, and martens entered and crossed areas with reduced forest cover when motivated by bait, particularly in the winter. However, our telemetry data showed that without such incentive, martens avoided openings and simple stands and selected complex forest stands equally during summer and winter.ConclusionsDetections at baited stations may not represent typical habitat preferences during winter, and incentivized experiments reflect the capacity of martens to enter non-preferred stand types under high motivation (e.g., hunger, curiosity, dispersal). We hypothesize snow cover facilitates connectivity across openings when such motivation is present; thus, snow cover may benefit dispersing animals and increase population connectivity. Landscapes with joined networks of complex stands are crucial for maintaining functional connectivity for marten, particularly during summer.


Landscape Ecology | 2014

Using network theory to prioritize management in a desert bighorn sheep metapopulation

Tyler G. Creech; Clinton W. Epps; Ryan J. Monello; John D. Wehausen

Connectivity models using empirically-derived landscape resistance maps can predict potential linkages among fragmented animal and plant populations. However, such models have rarely been used to guide systematic decision-making, such as identifying the most important habitat patches and dispersal corridors to protect or restore in order to maximize regional connectivity. Combining resistance models with network theory offers one means of prioritizing management for connectivity, and we applied this approach to a metapopulation of desert bighorn sheep (Ovis canadensis nelsoni) in the Mojave Desert of the southwestern United States. We used a genetic-based landscape resistance model to construct network models of genetic connectivity (potential for gene flow) and demographic connectivity (potential for colonization of empty habitat patches), which may differ because of sex-biased dispersal in bighorn sheep. We identified high-priority habitat patches and corridors and found that the type of connectivity and the network metric used to quantify connectivity had substantial effects on prioritization results, although some features ranked highly across all combinations. Rankings were also sensitive to our empirically-derived estimates of maximum effective dispersal distance, highlighting the importance of this often-ignored parameter. Patch-based analogs of our network metrics predicted both neutral and mitochondrial genetic diversity of 25 populations within the study area. This study demonstrates that network theory can enhance the utility of landscape resistance models as tools for conservation, but it is critical to consider the implications of sex-biased dispersal, the biological relevance of network metrics, and the uncertainty associated with dispersal range and behavior when using this approach.


Ecological Applications | 2016

Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.

Jessica A. Castillo; Clinton W. Epps; Mackenzie R. Jeffress; Chris Ray; Thomas J. Rodhouse; Donelle Schwalm

Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity. We concluded that climate change, besides influencing patch occupancy as predicted by other studies, may alter landscape resistance for pikas, thereby influencing functional connectivity through multiple pathways simultaneously. Spatial autocorrelation among genotypes varied across study sites and was largest where habitat was most dispersed, suggesting that dispersal distances increased with habitat fragmentation, up to a point. This study demonstrates how landscape features linked to climate can affect functional connectivity for species with naturally fragmented distributions, and reinforces the importance of replicating studies across landscapes.


The Condor | 2014

Considering the switch: Challenges of transitioning to non-lead hunting ammunition

Clinton W. Epps

ABSTRACT In this issue of The Condor: Ornithological Applications, Haig et al. (2014) summarize negative impacts of lead ammunition and fishing tackle on birds and discuss strategies for mitigating risks to wildlife and human health. Their Review raises an important set of questions for hunters, wildlife managers, and conservation scientists. Effective mitigation will require careful understanding of technical, economic, and social dimensions of the problem. Here, I focus on challenges specific to adopting non-lead ammunition for hunting, particularly for large game animals. I discuss limitations of using the ban on lead ammunition for waterfowl hunting as an analog for reducing lead use for other types of hunting, explain important technical considerations in design and use of non-lead ammunition, and point out areas where effective non-lead alternatives are still lacking. I suggest that currently available economic analyses of the cost of non-lead alternatives are inadequate and do not recognize wide variation in hunter behavior. These considerations have strong implications for designing effective outreach and predicting responses of hunters asked to consider non-lead alternatives. Enforcing outright bans on using lead ammunition for all types of hunting, as recently enacted in California, may prove even more challenging than similar restrictions for waterfowl hunting. Despite this, I propose that major reductions in exposure of wildlife and people to lead bullet fragments are achievable, particularly through outreach and incentive programs that focus on the most commonly used types of firearms for big game hunting—high velocity modern rifles. Bullets from these widely used rifles typically produce the most lead fragments and have the best selection of effective non-lead options available at this time. Efforts to change hunter behavior must recognize the true costs and challenges of changing to non-lead ammunition. Likewise, hunters should recognize and accept their important role in wildlife conservation and work to embrace effective alternatives to lead as they become available.

Collaboration


Dive into the Clinton W. Epps's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Zielinski

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Ray

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katie M. Moriarty

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge