Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clodia Osipo is active.

Publication


Featured researches published by Clodia Osipo.


Clinical Cancer Research | 2010

Targeting Notch to Target Cancer Stem Cells

Antonio Pannuti; Kimberly E. Foreman; Paola Rizzo; Clodia Osipo; Todd E. Golde; Barbara A. Osborne; Lucio Miele

The cellular heterogeneity of neoplasms has been at the center of considerable interest since the “cancer stem cell hypothesis”, originally formulated for hematologic malignancies, was extended to solid tumors. The origins of cancer “stem” cells (CSC) or tumor-initiating cells (TIC; henceforth referred to as CSCs) and the methods to identify them are hotly debated topics. Nevertheless, the existence of subpopulations of tumor cells with stem-like characteristics has significant therapeutic implications. The stem-like phenotype includes indefinite self-replication, pluripotency, and, importantly, resistance to chemotherapeutics. Thus, it is plausible that CSCs, regardless of their origin, may escape standard therapies and cause disease recurrences and/or metastasis after apparently complete remissions. Consequently, the idea of selectively targeting CSCs with novel therapeutics is gaining considerable interest. The Notch pathway is one of the most intensively studied putative therapeutic targets in CSC, and several investigational Notch inhibitors are being developed. However, successful targeting of Notch signaling in CSC will require a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to prove safe and effective. Additionally, to determine which patients are most likely to benefit from treatment with Notch-targeting therapeutics, reliable biomarkers to measure pathway activity in CSC from specific tumors will have to be identified and validated. This article summarizes the most recent developments in the field of Notch-targeted cancer therapeutics, with emphasis on CSC. Clin Cancer Res; 16(12); 3141–52. ©2010 AACR.


Oncogene | 2008

Rational targeting of Notch signaling in cancer

Paola Rizzo; Clodia Osipo; Kimberly E. Foreman; Todd E. Golde; Barbara A. Osborne; Lucio Miele

Accumulating preclinical and clinical evidence supports a pro-oncogenic function for Notch signaling in several solid tumors, particularly but not exclusively in breast cancer. Notch inhibitory agents, such as γ-secretase inhibitors, are being investigated as candidate cancer therapeutic agents. Interest in therapeutic modulation of the Notch pathway has been increased by recent reports, indicating that its role is important in controlling the fate of putative ‘breast cancer stem cells’. However, as is the case for most targeted therapies, successful targeting of Notch signaling in cancer will require a considerable refinement of our understanding of the regulation of this pathway and its effects in both normal and cancer cells. Notch signaling has bidirectional ‘cross talk’ interaction with multiple other pathways that include candidate therapeutic targets. Understanding these interactions will greatly increase our ability to design rational combination regimens. To determine which patients are most likely to benefit from treatment with Notch inhibitors, it will be necessary to develop molecular tests to accurately measure pathway activity in specific tumors. Finally, mechanism-based toxicities will have to be addressed by a careful choice of therapeutic agents, combinations and regimens. This article summarizes the current state of the field, and briefly describes opportunities and challenges for Notch-targeted therapies in oncology.


Cancer Research | 2008

Cross-talk between Notch and the Estrogen Receptor in Breast Cancer Suggests Novel Therapeutic Approaches

Paola Rizzo; Haixi Miao; Gwendolyn D'Souza; Clodia Osipo; Jieun Yun; Huiping Zhao; Joaquina Mascarenhas; Debra Wyatt; Giovanni Antico; Lu Hao; Katharine Yao; Prabha Rajan; Chindo Hicks; Kalliopi P. Siziopikou; Suzanne M. Selvaggi; Amina Bashir; Deepali Bhandari; Adriano Marchese; Urban Lendahl; Jian Zhong Qin; Debra A. Tonetti; Kathy S. Albain; Brian J. Nickoloff; Lucio Miele

High expression of Notch-1 and Jagged-1 mRNA correlates with poor prognosis in breast cancer. Elucidating the cross-talk between Notch and other major breast cancer pathways is necessary to determine which patients may benefit from Notch inhibitors, which agents should be combined with them, and which biomarkers indicate Notch activity in vivo. We explored expression of Notch receptors and ligands in clinical specimens, as well as activity, regulation, and effectors of Notch signaling using cell lines and xenografts. Ductal and lobular carcinomas commonly expressed Notch-1, Notch-4, and Jagged-1 at variable levels. However, in breast cancer cell lines, Notch-induced transcriptional activity did not correlate with Notch receptor levels and was highest in estrogen receptor alpha-negative (ERalpha(-)), Her2/Neu nonoverexpressing cells. In ERalpha(+) cells, estradiol inhibited Notch activity and Notch-1(IC) nuclear levels and affected Notch-1 cellular distribution. Tamoxifen and raloxifene blocked this effect, reactivating Notch. Notch-1 induced Notch-4. Notch-4 expression in clinical specimens correlated with proliferation (Ki67). In MDA-MB231 (ERalpha(-)) cells, Notch-1 knockdown or gamma-secretase inhibition decreased cyclins A and B1, causing G(2) arrest, p53-independent induction of NOXA, and death. In T47D:A18 (ERalpha(+)) cells, the same targets were affected, and Notch inhibition potentiated the effects of tamoxifen. In vivo, gamma-secretase inhibitor treatment arrested the growth of MDA-MB231 tumors and, in combination with tamoxifen, caused regression of T47D:A18 tumors. Our data indicate that combinations of antiestrogens and Notch inhibitors may be effective in ERalpha(+) breast cancers and that Notch signaling is a potential therapeutic target in ERalpha(-) breast cancers.


Laboratory Investigation | 2008

Off the beaten pathway: the complex cross talk between Notch and NF-κB

Clodia Osipo; Todd E. Golde; Barbara A. Osborne; Lucio Miele

The canonical Notch pathway that has been well characterized over the past 25 years is relatively simple compared to the plethora of recently published data suggesting non-canonical signaling mechanisms and cross talk with other pathways. The manner in which other pathways cross talk with Notch signaling appears to be extraordinarily complex and, not surprisingly, context-dependent. While the physiological relevance of many of these interactions remains to be established, there is little doubt that Notch signaling is integrated with numerous other pathways in ways that appear increasingly complex. Among the most intricate cross talks described for Notch is its interaction with the NF-κB pathway, another major cell fate regulatory network involved in development, immunity, and cancer. Numerous reports over the last 11 years have described multiple cross talk mechanisms between Notch and NF-κB in diverse experimental models. This article will provide a brief overview of the published evidence for Notch–NF-κB cross talk, focusing on vertebrate systems.


Oncogene | 2008

ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor.

Clodia Osipo; P Patel; Paola Rizzo; Anthony G Clementz; L Hao; Todd E. Golde; Lucio Miele

ErbB-2 overexpression in breast tumors is associated with poor survival. Expression of Notch-1 and its ligand, Jagged-1, is associated with the poorest survival, including ErbB-2-positive tumors. Trastuzumab plus chemotherapy is the standard of care for ErbB-2-positive breast cancer. A proportion of tumors are initially resistant to trastuzumab and acquired resistance to trastuzumab occurs in metastatic breast cancer and is associated with poor prognosis. Thus, we investigated whether Notch-1 contributes to trastuzumab resistance. ErbB-2-positive cells have low Notch transcriptional activity compared to non-overexpressing cells. Trastuzumab or a dual epidermal growth factor receptor (EGFR)/ErbB-2 tyrosine kinase inhibitor (TKI) increased Notch activity by 2- to 6-fold in SKBr3, BT474 and MCF-7/HER2-18 cells. The increase in activity was abrogated by a Notch inhibitor, γ-secretase inhibitor (GSI) or Notch-1 small-interfering RNA (siRNA). Trastuzumab decreased Notch-1™ precursor, increased amount and nuclear accumulation of active Notch-1IC and increased expression of targets, Hey1 and Deltex1 mRNAs, and Hes5, Hey1, Hes1 proteins. Importantly, trastuzumab-resistant BT474 cells treated with trastuzumab for 6 months expressed twofold higher Notch-1, twofold higher Hey1, ninefold higher Deltex1 mRNAs and threefold higher Notch-1 and Hes5 proteins, compared to trastuzumab-sensitive BT474 cells. The increase in Hey1 and Deltex1 mRNAs in resistant cells was abrogated by a Notch-1 siRNA. Cell proliferation was inhibited more effectively by trastuzumab or TKI plus a GSI than either agent alone. Decreased Notch-1 by siRNA increased efficacy of trastuzumab in BT474 sensitive cells and restored sensitivity in resistant cells. Trastuzumab plus a GSI increased apoptosis in sensitive cells by 20–30%. A GSI alone was sufficient to increase apoptosis in trastuzumab-resistant BT474 cells by 20%, which increased to 30% with trastuzumab. Notch-1 siRNA alone decreased cell growth by 30% in sensitive and more than 50% in resistant BT474 cells. Furthermore, growth of both trastuzumab sensitive and resistant cells was completely inhibited by combining trastuzumab plus Notch-1 siRNA. More importantly, Notch-1 siRNA or a GSI resensitized trastuzumab-resistant BT474 cells to trastuzumab. These results demonstrate that ErbB-2 overexpression suppresses Notch-1 activity, which can be reversed by trastuzumab or TKI. These results suggest that Notch-1 might play a novel role in resistance to trastuzumab, which could be prevented or reversed by inhibiting Notch-1.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

Estrogen-induced apoptosis in a breast cancer model resistant to long-term estrogen withdrawal.

J.S. Lewis; Clodia Osipo; Kathleen Meeke; V.C. Jordan

Estrogen suppression through the use of an aromatase inhibitor is an effective endocrine treatment option for postmenopausal breast cancer patients with estrogen receptor (ER)-positive disease, however, there are concerns that long-term estrogen deprivation will inevitably lead to resistance. To address the issue of acquired resistance to long-term estrogen deprivation our laboratory has developed an ER+/PR- hormone-independent breast cancer cell line, MCF-7:5C which is a variant clone of wild-type MCF-7 cells. Originally, these cells were cultured in estrogen-free MEM containing 5% charcoal-stripped calf serum and were found to be resistant to both estradiol (E(2)) and antiestrogens. Interestingly, a completely different phenomenon was observed when MCF-7:5C cells were cultured in phenol red-free RPMI 1640 medium containing 10% charcoal-stripped fetal bovine serum (SFS). Using DNA quantitation assays, we examined the effect of E(2) on the growth of MCF-7:5C cells under different media conditions. Our results showed that 10(-9)M E(2) caused a dramatic 90% reduction in the growth of MCF-7:5C cells cultured in RPMI medium containing 10% SFS but did not have any significant inhibitory effects on cells cultured in MEM media. Additional experiments were performed to determine whether the medium or the serum facilitated the inhibitory effects of E(2) and the results indicated that it was the serum. Annexin V and DAPI staining confirmed that the E(2)-induced growth inhibition of MCF-7:5C cells was due to apoptosis. We also examined the tumorigenic potential of MCF-7:5C cells by injecting 1x10(7)cells/site into ovariectomized athymic mice and found that these cells, previously cultured in RPMI media, spontaneously grew into tumors in the absence of E(2). Overall, these results show that low concentrations (>10(-11)M) of E(2) are capable of inducing apoptosis in an aromatase resistant breast cancer cell model and that this effect is highly influenced by the medium in which the cells are grown.


British Journal of Cancer | 2011

Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence

K Pandya; Kathleen Meeke; Anthony G Clementz; A Rogowski; J Roberts; Lucio Miele; Kathy S. Albain; Clodia Osipo

Background:We reported that Notch-1, a potent breast oncogene, is activated in response to trastuzumab and contributes to trastuzumab resistance in vitro. We sought to determine the preclinical benefit of combining a Notch inhibitor (γ-secretase inhibitor (GSI)) and trastuzumab in both trastuzumab-sensitive and trastuzumab-resistant, ErbB-2-positive, BT474 breast tumours in vivo. We also studied if the combination therapy of lapatinib plus GSI can induce tumour regression of ErbB-2-positive breast cancer.Methods:We generated orthotopic breast tumour xenografts from trastuzumab- or lapatinib-sensitive and trastuzumab-resistant BT474 cells. We investigated the antitumour activities of two distinct GSIs, LY 411 575 and MRK-003, in vivo.Results:Our findings showed that combining trastuzumab plus a GSI completely prevented (MRK-003 GSI) or significantly reduced (LY 411 575 GSI) breast tumour recurrence post-trastuzumab treatment in sensitive tumours. Moreover, combining lapatinib plus MRK-003 GSI showed significant reduction of tumour growth. Furthermore, a GSI partially reversed trastuzumab resistance in resistant tumours.Conclusion:Our data suggest that a combined inhibition of Notch and ErbB-2 signalling pathways could decrease recurrence rates for ErbB-2-positive breast tumours and may be beneficial in the treatment of recurrent trastuzumab-resistant disease.


Oncogene | 2010

Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells

L Hao; Paola Rizzo; Clodia Osipo; Antonio Pannuti; Debra Wyatt; Lw Cheung; G Sonenshein; Ba Osborne; Lucio Miele

Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself.


OncoTargets and Therapy | 2013

Gamma secretase inhibitors of Notch signaling

Roma Olsauskas-Kuprys; Andrei Zlobin; Clodia Osipo

The numerous processes involved in the etiology of breast cancer such as cell survival, metabolism, proliferation, differentiation, and angiogenesis are currently being elucidated. However, underlying mechanisms that drive breast cancer progression and drug resistance are still poorly understood. As we discuss here in detail, the Notch signaling pathway is an important regulatory component of normal breast development, cell fate of normal breast stem cells, and proliferation and survival of breast cancer initiating cells. Notch exerts a wide range of critical effects through a canonical pathway where it is expressed as a type I membrane precursor heterodimer followed by at least two subsequent cleavages induced by ligand engagement to ultimately release an intracellular form to function as a transcriptional activator. Notch and its ligands are overexpressed in breast cancer, and one method of effectively blocking Notch activity is preventing its cleavage at the cell surface with γ-secretase inhibitors. In the context of Notch signaling, the application of clinically relevant anti-Notch drugs in treatment regimens may contribute to novel therapeutic interventions and promote more effective clinical response in women with breast cancer.


Breast Cancer Research | 2011

NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications.

Anthony G Clementz; Allison Rogowski; Kinnari Pandya; Lucio Miele; Clodia Osipo

IntroductionWomen with triple-negative breast cancer have the worst prognosis, frequently present with metastatic tumors and have few targeted therapy options. Notch-1 and Notch-4 are potent breast oncogenes that are overexpressed in triple-negative and other subtypes of breast cancer. PEA3, an ETS transcription factor, is also overexpressed in triple-negative and other breast cancer subtypes. We investigated whether PEA3 could be the critical transcriptional activator of Notch receptors in MDA-MB-231 and other breast cancer cells.MethodsReal-time PCR and Western blot analysis were performed to detect Notch-1, Notch-2, Notch-3 and Notch-4 receptor expression in breast cancer cells when PEA3 was knocked down by siRNA. Chromatin immunoprecipitation was performed to identify promoter regions for Notch genes that recruited PEA3. TAM-67 and c-Jun siRNA were used to identify that c-Jun was necessary for PEA3 enrichment on the Notch-4 promoter. A Notch-4 luciferase reporter was used to confirm that endogenous PEA3 or AP-1 activated the Notch-4 promoter region. Cell cycle analysis, trypan blue exclusion, annexin V flow cytometry, colony formation assay and an in vivo xenograft study were performed to determine the biological significance of targeting PEA3 via siRNA, Notch signaling via a γ-secretase inhibitor, or both.ResultsHerein we provide new evidence for transcriptional regulation of Notch by PEA3 in breast cancer. PEA3 activates Notch-1 transcription in MCF-7, MDA-MB-231 and SKBr3 breast cancer cells. PEA3 activates Notch-4 transcription in MDA-MB-231 cells where PEA3 levels are endogenously high. In SKBr3 and BT474 breast cancer cells where PEA3 levels are low, overexpression of PEA3 increases Notch-4 transcripts. Chromatin immunoprecipitation confirmed the enrichment of PEA3 on Notch-1 and Notch-4 promoters in MDA-MB-231 cells. PEA3 recruitment to Notch-1 was AP-1-independent, whereas PEA3 recruitment to Notch-4 was c-JUN-dependent. Importantly, the combined inhibition of Notch signaling via a γ-secretase inhibitor (MRK-003 GSI) and knockdown of PEA3 arrested growth in the G1 phase, decreased both anchorage-dependent and anchorage-independent growth and significantly increased apoptotic cells in vitro. Moreover, either PEA3 knockdown or MRK-003 GSI treatment significantly reduced tumor growth of MDA-MB-231 xenografts in vivo.ConclusionsTaken together, the results from this study demonstrate for the first time that Notch-1 and Notch-4 are novel transcriptional targets of PEA3 in breast cancer cells. Targeting of PEA3 and/or Notch pathways might provide a new therapeutic strategy for triple-negative and possibly other breast cancer subtypes.

Collaboration


Dive into the Clodia Osipo's collaboration.

Top Co-Authors

Avatar

Lucio Miele

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debra Wyatt

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Kathleen Meeke

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Andrei Zlobin

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Dong Cheng

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Paola Rizzo

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Kathy S. Albain

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Kinnari Pandya

Loyola University Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge