Clotilde Gimond
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clotilde Gimond.
Experimental Cell Research | 1992
Clotilde Gimond; Monique Aumailley
Extracellular matrix (ECM) glycoproteins such as laminin, fibronectin, or collagen IV play a major role in cell behavior regulation. The molecular mechanisms taking place at the interface between the ECM and the cell surface are now rather well defined; however, very little is known about intracellular signals induced by these interactions. In order to get insights into the transduction pathways involved in cell-ECM interactions we have investigated the effects of several intracellular kinase inhibitors. Calmodulin-dependent kinase inhibitors, W-7 and sphingosine, have negative effects on cell-matrix interactions. They inhibit adhesion of several cell lines to laminin (IC50 = 4-10 microM), fibronectin and collagen IV (IC50 = 7-25 microM). The effects are immediate, reversible, and also cell specific, certain combinations of cell line-substrate being irresponsive to these inhibitors. In contrast, two inhibitors, H-7 and staurosporine, for which protein kinase C is a common target, increase two- to fourfold the attachment of HT1080, OVCAR-4, and B16F10 cells to laminin but not to fibronectin. Another inhibitor, HA-1004, known to inhibit protein kinase A at low concentrations, has an activating effect only at high concentration (> 200 microM) when it becomes an inhibitor of protein kinase C. These inhibitors are without effect on RuGli and Saos-2 cell adhesion on the three substrates. Altogether these results suggest that calmodulin-dependent kinases and protein kinase C could be separately involved in ECM-induced cellular responses. However, the effects of kinase inhibitors are substrate-specific and cell type-specific, suggesting that the intracellular signals induced by the extracellular matrix vary with the nature of integrin involved in signal transmission.
Evolution | 2013
Clotilde Gimond; Richard Jovelin; Shery Han; Céline Ferrari; Asher D. Cutter; Christian Braendle
Theory and empirical study produce clear links between mating system evolution and inbreeding depression. The connections between mating systems and outbreeding depression, whereby fitness is reduced in crosses of less related individuals, however, are less well defined. Here we investigate inbreeding and outbreeding depression in self‐fertile androdioecious nematodes, focusing on Caenorhabditis sp. 11. We quantify nucleotide polymorphism for nine nuclear loci for strains throughout its tropical range, and find some evidence of genetic differentiation despite the lowest sequence diversity observed in this genus. Controlled crosses between strains from geographically separated regions show strong outbreeding depression, with reproductive output of F1s reduced by 36% on average. Outbreeding depression is therefore common in self‐fertilizing Caenorhabditis species, each of which evolved androdioecious selfing hermaphroditism independently, but appears strongest in C. sp. 11. Moreover, the poor mating efficiency of androdioecious males extends to C. sp. 11. We propose that self‐fertilization is a key driver of outbreeding depression, but that it need not evolve as a direct result of local adaptation per se. Our verbal model of this process highlights the need for formal theory, and C. sp. 11 provides a convenient system for testing the genetic mechanisms that cause outbreeding depression, negative epistasis, and incipient speciation.
Cell Adhesion and Communication | 1996
Clotilde Gimond; Isabelle Mercier; Igor Weber; Monique Aumailley
Cell adhesion to laminin 1 or to fibronectin is mediated by distinct sets of integrins and is differentially regulated by protein kinase C (PKC). It suggests that upon integrin ligation to laminin 1 or to fibronectin different intracellular signaling pathways could be activated. we have therefore investigated the formation of signaling complexes induced during cell adhesion to laminin 1 or to fibronectin. Following cell adhesion to laminin 1 the re-arrangement of the cytoskeleton was slower than that observed on fibronectin and it was activated by treating the cells with H-7, an inhibitor of PKC. Conversely, treatment of laminin-adhering cells with a PKC activator resulted in a rapid disorganization of the actin cyto skeleton while a similar treatment had no effect on fibronectin-adhering cells. These results suggested that the structural organization of the adhesion complexes might be substrate-specific and might correspond to a different arrangement of cytoskeletal and/or cytoplasmic proteins. Reflection interference contrast microscopy (RICM) images revealed that cell-substratum contacts formed on laminin 1 were not well differentiated in contrast to those developed on fibronectin. However, immunofluorescence staining revealed a similar organisation of actin microfilaments, talin and phosphotyrosyl-containing proteins on both substrates. In contrast, differences were observed for vinculin distribution within cells spread on fibronectin or on laminin 1. Following cell adhesion to fibronectin most of the vinculin appeared as thick patches at the tips of the actin stress fibers while in laminin-adhering cells vinculin was recruited into thin streaks localized at the end of only some actin stress fibers.
Evolution | 2016
Anne Vielle; Nicolas Callemeyn-Torre; Clotilde Gimond; Nausicaa Poullet; Jeremy C. Gray; Asher D. Cutter; Christian Braendle
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50‐fold range of sperm‐cell volumes across the genus have sperm capable of comprising up to 5% of egg‐cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter‐ and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Archive | 1997
Clotilde Gimond; Arnoud Sonnenberg
Adhesion molecules play a major role in many physiological and developmental processes. The adhesion receptors of the integrin family are involved in the regulation of cell growth and proliferation, migration and differentiation. Integrins are transmembrane heterodimers formed by noncovalently associated α and β subunits.1 The extracellular domains of integrins mediate both cell-cell and cell-matrix interactions. Through interaction of their cytoplasmic domains with cytoskeleton associated proteins, integrins connect the outside of the cell with the cytoskeleton. Sixteen α and eight β subunits have been identified so far, constituting a family of over twenty distinct receptors. The integrin repertoire is cell-type specific and it can also change in a given cell type during development and differentiation. The expression, but also the affinity of integrins can be regulated under various physiological and pathological conditions, resulting in a change in the adhesion properties of the cell. For example, cells in suspension can be induced to aggregate, or to attach to matrix proteins. Conversely, adherent cells may receive signals that induce them to detach and migrate on a matrix substrate or through layers of cells.
PLOS Genetics | 2017
Andreas H. Ludewig; Clotilde Gimond; Joshua C. Judkins; Staci Thornton; Dania C. Pulido; Robert J. Micikas; Frank Döring; Adam Antebi; Christian Braendle; Frank C. Schroeder
Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.
Evolution & Development | 2015
Nausicaa Poullet; Anne Vielle; Clotilde Gimond; Céline Ferrari; Christian Braendle
Thermal developmental plasticity represents a key organismal adaptation to maintain reproductive capacity in contrasting and fluctuating temperature niches. Although extensively studied, research on thermal plasticity has mainly focused on phenotypic outcomes, such as adult life history, rather than directly measuring plasticity of underlying developmental processes. How thermal plasticity of developmental phenotypes maps into plasticity of resulting final phenotypes, and how such mapping relationships evolve, thus remain poorly understood. Here we address these questions by quantifying thermal plasticity of Caenorhabditis hermaphrodite germline development. We integrate measurements of germline development and fertility at the upper thermal range in isolates of C. briggsae, C. elegans, and C. tropicalis. First, we compare intra‐ and interspecific variation in thermal germline plasticity with plasticity in reproductive output. Second, we ask whether the developmental errors leading to fertility break‐down at upper thermal limits are evolutionarily conserved. We find that temperature variation modulates spermatogenesis, oogenesis and germ cell progenitor pools, yet the thermal sensitivity of these processes varies among isolates and species, consistent with evolutionary variation in upper thermal limits of hermaphrodite fertility. Although defective sperm function is a major contributor to heat‐induced fertility break‐down, high temperature also significantly perturbs oogenesis, germline integrity, and mitosis–meiosis progression. Remarkably, the occurrence and frequency of specific errors are strongly species‐ and genotype‐dependent, indicative of evolutionary divergence in thermal sensitivity of distinct processes in germline development. Therefore, the Caenorhabditis reproductive system displays complex genotype‐by‐temperature interactions at the developmental level, which may remain masked when studying thermal plasticity exclusively at the life history level.
bioRxiv | 2016
Nausicaa Poullet; Anne Vielle; Clotilde Gimond; Sara Carvalho; Henrique Teotónio; Christian Braendle
Hermaphroditic organisms are common both in plants and animals, and have served as key models to study the evolution of sex allocation. Despite extensive past research, the specific developmental mechanisms by which hermaphrodite sex allocation can evolve remain largely unknown. To address this problem, we here use experimental evolution of Caenorhabditis elegans hermaphrodite-male populations to directly quantify changes in germline and somatic development that underlie adaptive shifts in hermaphrodite sex allocation associated with the evolution of improved self-fertility. Specifically, we test whether the evolution of hermaphrodite sex allocation is due to heterochrony, i.e. evolutionary changes in the relative timing of developmental processes. We show that the experimental evolution of improved hermaphrodite self-fertility occurred through complex modification of a suite of developmental and reproductive traits: increased sperm production, accelerated oogenesis and ovulation rates, and increased embryo retention in utero. The experimental evolution of increased sperm production delayed entry into oogenesis – as expected, given the sequentially coupled production of spermatogenesis and oogenesis. Surprisingly, however, delayed oogenesis onset did not delay reproductive maturity, nor did it trade-off with gamete or embryo size. Comparing developmental dynamics of germline and soma indicates that the evolution of increased sperm production did not delay reproductive maturity due to a globally accelerated larval development during the period of spermatogenesis. We conclude that the integration of multiple heterochronic events in gametogenesis and soma can explain the experimental evolution of hermaphrodite sex allocation and self-fertility. Our results thus support the idea that heterochrony can represent a specific mechanism that explains the maintenance of partial selfing in natural populations with mixed reproduction modes and different forms of hermaphroditism. More generally, our results provide a quantitative perspective on how natural selection can operate on developmental characters – and their integration – during the evolution of life history at the population level.
Journal of Cell Biology | 1999
Clotilde Gimond; Arjan van der Flier; Sanne van Delft; Cord Brakebusch; Ingrid Kuikman; John G. Collard; Reinhard Fässler; Arnoud Sonnenberg
Journal of Cell Biology | 1998
Clotilde Gimond; Christian Baudoin; Ronald van der Neut; Duco Kramer; Jero Calafat; Arnoud Sonnenberg