Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clotilde Lauro is active.

Publication


Featured researches published by Clotilde Lauro.


Journal of Neuroimmunology | 2005

Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity.

Cristina Limatola; Clotilde Lauro; Myriam Catalano; Maria Teresa Ciotti; Cristina Bertollini; Silvia Di Angelantonio; Davide Ragozzino; Fabrizio Eusebi

Excitotoxicity is a cell death caused by excessive exposure to glutamate (Glu), contributing to neuronal degeneration in many acute and chronic CNS diseases. We explored the role of fractalkine/CX3CL1 on survival of hippocampal neurons exposed to excitotoxic doses of Glu. We found that: CX3CL1 reduces excitotoxicity when co-applied with Glu, through the activation of the ERK1/2 and PI3K/Akt pathways, or administered up to 8 h after Glu insult; CX3CL1 reduces the Glu-activated whole-cell current through mechanisms dependent on intracellular Ca2+; CX3CL1 is released from hippocampal cells after excitotoxic insult, likely providing an endogenous protective mechanism against excitotoxic cell death.


Journal of Biological Chemistry | 2003

Ligand-independent CXCR2 Dimerization

Flavia Trettel; Sabrina Di Bartolomeo; Clotilde Lauro; Myriam Catalano; Maria Teresa Ciotti; Cristina Limatola

Homo- and hetero-oligomerization have been reported for several G protein-coupled receptors (GPCRs). The CXCR2 is a GPCR that is activated, among the others, by the chemokines CXCL8 (interleukin-8) and CXCL2 (growth-related gene product β) to induce cell chemotaxis. We have investigated the oligomerization of CXCR2 receptors expressed in human embryonic kidney cells and generated a series of truncated mutants to determine whether they could negatively regulate the wild-type (wt) receptor functions. CXCR2 receptor oligomerization was also studied by coimmunoprecipitation of green fluorescent protein- and V5-tagged CXCR2. Truncated CXCR2 receptors retained their ability to form oligomers only if the region between the amino acids Ala-106 and Lys-163 was present. In contrast, all of the deletion mutants analyzed were able to form heterodimers with the wt CXCR2 receptor, albeit with different efficiency, competing for wt/wt dimer formation. The truncated CXCR2 mutants were not functional and, when coexpressed with wt CXCR2, interfered with receptor functions, impairing cell signaling and chemotaxis. When CXCR2 was expressed with the AMPA-type glutamate receptor GluR1, CXCR2 dimerization was again impaired in a dose-dependent way, and receptor functions were prejudiced. In contrast, CXCR1, a chemokine receptor that shares many similarities with CXCR2, did not dimerize alone or with CXCR2 and when coexpressed with CXCR2 did not impair receptor signaling and chemotaxis. The formation of CXCR2 dimers was also confirmed in cerebellar neuron cells. Taken together, we conclude from these studies that CXCR2 functions as a dimer and that truncated receptors negatively modulate receptor activities competing for the formation of wt/wt dimers.


Journal of Immunology | 2008

Activity of Adenosine Receptors Type 1 Is Required for CX3CL1-Mediated Neuroprotection and Neuromodulation in Hippocampal Neurons

Clotilde Lauro; Silvia Di Angelantonio; Raffaela Cipriani; Fabrizia Sobrero; Letizia Antonilli; Valentina Brusadin; Davide Ragozzino; Cristina Limatola

The chemokine fractalkine (CX3CL1) is constitutively expressed by central neurons, regulating microglial responses including chemotaxis, activation, and toxicity. Through the activation of its own specific receptor, CX3CR1, CX3CL1 exerts both neuroprotection against glutamate (Glu) toxicity and neuromodulation of the glutamatergic synaptic transmission in hippocampal neurons. Using cultured hippocampal neuronal cell preparations, obtained from CX3CR1−/− (CX3CR1GFP/GFP) mice, we report that these same effects are mimicked by exposing neurons to a medium conditioned with CX3CL1-treated mouse microglial cell line BV2 (BV2-st medium). Furthermore, CX3CL1-induced neuroprotection from Glu toxicity is mediated through the adenosine receptor 1 (AR1), being blocked by neuronal cell preparations treatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a specific inhibitor of AR1, and mimicked by both adenosine and the specific AR1 agonist 2-chloro-N6-cyclopentyladenosine. Similarly, experiments from whole-cell patch-clamped hippocampal neurons in culture, obtained from CX3CR1+/+ mice, show that CX3CL1-induced depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- (AMPA-) type Glu receptor-mediated current (AMPA-current), is associated with AR1 activity being blocked by DPCPX and mimicked by adenosine. Furthermore, BV2-st medium induced a similar AMPA-current depression in CX3CR1GFP/GFP hippocampal neurons and this depression was again blocked by DPCPX. We also report that CX3CL1 induced a significant release of adenosine from microglial BV2 cells, as measured by HPLC analysis. We demonstrate that (i) CX3CL1, along with AR1, are critical players for counteracting Glu-mediated neurotoxicity in the brain and (ii) AR1 mediates neuromodulatory action of CX3CL1 on hippocampal neurons.


Frontiers in Cellular Neuroscience | 2011

CX3CR1 Deficiency Alters Hippocampal-Dependent Plasticity Phenomena Blunting the Effects of Enriched Environment

Laura Maggi; Maria Scianni; Igor Branchi; Ivana D'Andrea; Clotilde Lauro; Cristina Limatola

In recent years several evidence demonstrated that some features of hippocampal biology, like neurogenesis, synaptic transmission, learning, and memory performances are deeply modulated by social, motor, and sensorial experiences. Fractalkine/CX3CL1 is a transmembrane chemokine abundantly expressed in the brain by neurons, where it modulates glutamatergic transmission and long-term plasticity processes regulating the intercellular communication between glia and neurons, being its specific receptor CX3CR1 expressed by microglia. In this paper we investigated the role of CX3CL1/CX3CR1 signaling on experience-dependent hippocampal plasticity processes. At this aim wt and CX3CR1GFP/GFP mice were exposed to long-lasting-enriched environment (EE) and the effects on hippocampal functions were studied by electrophysiological recordings of long-term potentiation of synaptic activity, behavioral tests of learning and memory in the Morris water maze paradigm and analysis of neurogenesis in the subgranular zone of the dentate gyrus (DG). We found that CX3CR1 deficiency increases hippocampal plasticity and spatial memory, blunting the potentiating effects of EE. In contrast, exposure to EE increased the number and migration of neural progenitors in the DG of both wt and CX3CR1GFP/GFP mice. These data indicate that CX3CL1/CX3CR1-mediated signaling is crucial for a normal experience-dependent modulation of hippocampal functions.


Epilepsia | 2011

Anomalous levels of Cl− transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex

Luca Conti; Eleonora Palma; Cristina Roseti; Clotilde Lauro; Raffaela Cipriani; Marjolein de Groot; Eleonora Aronica; Cristina Limatola

Purpose:  Several factors contribute to epileptogenesis in patients with brain tumors, including reduced γ‐aminobutyric acid (GABA)ergic inhibition. In particular, changes in Cl− homeostasis in peritumoral microenvironment, together with alterations of metabolism, are key processes leading to epileptogenesis in patients afflicted by glioma. It has been recently proposed that alterations of Cl− homeostasis could be involved in tumor cell migration and metastasis formation. In neurons, the regulation of intracellular Cl− concentration ([Cl−]i) is mediated by NKCC1 and KCC2 transporters: NKCC1 increases while KCC2 decreases [Cl−]i. Experiments were thus designed to investigate whether, in human epileptic peritumoral cortex, alterations in the balance of NKCC1 and KCC2 activity may decrease the hyperpolarizing effects of GABA, thereby contributing to epileptogenesis in human brain tumors.


Neuropsychopharmacology | 2010

Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death.

Clotilde Lauro; Raffaela Cipriani; Myriam Catalano; Flavia Trettel; Giuseppina Chece; Valentina Brusadin; Letizia Antonilli; Nico van Rooijen; Fabrizio Eusebi; Bertil B. Fredholm; Cristina Limatola

Fractalkine/CX3CL1 is a neuron-associated chemokine, which modulates microglia-induced neurotoxicity activating the specific and unique receptor CX3CR1. CX3CL1/CX3CR1 interaction modulates the release of cytokines from microglia, reducing the level of tumor necrosis factor-α, interleukin-1-β, and nitric oxide and induces the production of neurotrophic substances, both in vivo and in vitro. We have recently shown that blocking adenosine A1 receptors (A1R) with the specific antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) abolishes CX3CL1-mediated rescue of neuronal excitotoxic death and that CX3CL1 induces the release of adenosine from microglia. In this study, we show that the presence of extracellular adenosine is mandatory for the neurotrophic effect of CX3CL1 as reducing adenosine levels in hippocampal cultures, by adenosine deaminase treatment, strongly impairs CX3CL1-mediated neuroprotection. Furthermore, we confirm the predominant role of microglia in mediating the neuronal effects of CX3CL1, because the selective depletion of microglia from hippocampal cultures treated with clodronate-filled liposomes causes the complete loss of effect of CX3CL1. We also show that hippocampal neurons obtained from A1R−/− mice are not protected by CX3CL1 whereas A2AR−/− neurons are. The requirement of functional A1R for neuroprotection is not unique for CX3CL1 as A1R−/− hippocampal neurons are not rescued from Glu-induced cell death by other neurotrophins such as brain-derived neurotrophic factor and erythropoietin, which are fully active on wt neurons.


Brain Behavior and Immunity | 2016

Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress

Giampaolo Milior; Cynthia Lecours; Louis Samson; Kanchan Bisht; Silvia Poggini; Francesca Pagani; Cristina Deflorio; Clotilde Lauro; Silvia Alboni; Cristina Limatola; Igor Branchi; Marie-Ève Tremblay; Laura Maggi

Chronic stress is one of the most relevant triggering factors for major depression. Microglial cells are highly sensitive to stress and, more generally, to environmental challenges. However, the role of these brain immune cells in mediating the effects of stress is still unclear. Fractalkine signaling - which comprises the chemokine CX3CL1, mainly expressed by neurons, and its receptor CX3CR1, almost exclusively present on microglia in the healthy brain - has been reported to critically regulate microglial activity. Here, we investigated whether interfering with microglial function by deleting the Cx3cr1 gene affects the brains response to chronic stress. To this purpose, we housed Cx3cr1 knockout and wild-type adult mice in either control or stressful environments for 2weeks, and investigated the consequences on microglial phenotype and interactions with synapses, synaptic transmission, behavioral response and corticosterone levels. Our results show that hampering neuron-microglia communication via the CX3CR1-CX3CL1 pathway prevents the effects of chronic unpredictable stress on microglial function, short- and long-term neuronal plasticity and depressive-like behavior. Overall, the present findings suggest that microglia-regulated mechanisms may underlie the differential susceptibility to stress and consequently the vulnerability to diseases triggered by the experience of stressful events, such as major depression.


Cell Death and Disease | 2013

KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo

Giuseppina D'Alessandro; Myriam Catalano; Miriam Sciaccaluga; Giuseppina Chece; R. Cipriani; Maria Rosito; Alfonso Grimaldi; Clotilde Lauro; G. Cantore; Antonio Santoro; Bernard Fioretti; Fabio Franciolini; Heike Wulff; Cristina Limatola

Glioblastoma multiforme (GBM) is a diffuse brain tumor characterized by high infiltration in the brain parenchyma rendering the tumor difficult to eradicate by neurosurgery. Efforts to identify molecular targets involved in the invasive behavior of GBM suggested ion channel inhibition as a promising therapeutic approach. To determine if the Ca2+-dependent K+ channel KCa3.1 could represent a key element for GBM brain infiltration, human GL-15 cells were xenografted into the brain of SCID mice that were then treated with the specific KCa3.1 blocker TRAM-34 (1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole). After 5 weeks of treatment, immunofluorescence analyses of cerebral slices revealed reduced tumor infiltration and astrogliosis surrounding the tumor, compared with untreated mice. Significant reduction of tumor infiltration was also observed in the brain of mice transplanted with KCa3.1-silenced GL-15 cells, indicating a direct effect of TRAM-34 on GBM-expressed KCa3.1 channels. As KCa3.1 channels are also expressed on microglia, we investigated the effects of TRAM-34 on microglia activation in GL-15 transplanted mice and found a reduction of CD68 staining in treated mice. Similar results were observed in vitro where TRAM-34 reduced both phagocytosis and chemotactic activity of primary microglia exposed to GBM-conditioned medium. Taken together, these results indicate that KCa3.1 activity has an important role in GBM invasiveness in vivo and that its inhibition directly affects glioma cell migration and reduces astrocytosis and microglia activation in response to tumor-released factors. KCa3.1 channel inhibition therefore constitutes a potential novel therapeutic approach to reduce GBM spreading into the surrounding tissue.


Epilepsia | 2013

Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy.

Cristina Roseti; Sergio Fucile; Clotilde Lauro; Katiuscia Martinello; Cristina Bertollini; Vincenzo Esposito; Addolorata Mascia; Myriam Catalano; Eleonora Aronica; Cristina Limatola; Eleonora Palma

The chemokine fractalkine/CX3CL1 and its receptor CX3CR1 are widely expressed in the central nervous system (CNS). Recent evidence showed that CX3CL1 participates in inflammatory responses that are common features of CNS disorders, such as epilepsy. Mesial temporal lobe epilepsy (MTLE) is the prevalent form of focal epilepsy in adults, and hippocampal sclerosis (HS) represents the most common underlying pathologic abnormality, as demonstrated at autopsy and postresection studies. Relevant features of MTLE are a characteristic pattern of neuronal loss, as are astrogliosis and microglia activation. Several factors affect epileptogenesis in patients with MTLE, including a lack of γ‐aminobutyric acid (GABA)ergic inhibitory efficacy. Therefore, experiments were designed to investigate whether, in MTLE brain tissues, CX3CL1 may influence GABAA receptor (GABAAR) mediatedtransmission, with a particular focus on the action of CX3CL1 on the use‐dependent decrease (rundown) of the GABA‐evoked currents (IGABA), a feature underlying the reduction of GABAergic function in epileptic tissue.


Journal of Immunology | 2006

The Chemokine CX3CL1 Reduces Migration and Increases Adhesion of Neurons with Mechanisms Dependent on the β1 Integrin Subunit

Clotilde Lauro; Myriam Catalano; Flavia Trettel; Fabrizio Mainiero; Maria Teresa Ciotti; Fabrizio Eusebi; Cristina Limatola

Fractalkine/CX3CL1 and its specific receptor CX3CR1 are constitutively expressed in several regions of the CNS and are reported to mediate neuron-microglial interaction, synaptic transmission, and neuronal protection from toxic insults. CX3CL1 is released both by neuronal and astrocytic cells, whereas CX3CR1 is mainly expressed by microglial cells and neurons. Microglial cells efficiently migrate in response to CX3CL1, whereas no evidence is reported to date on CX3CL1-induced neuronal migration. For this reason, we have investigated in vitro the effects of CX3CL1 on basal migration of neurons and of the microglial and astrocytic populations, all these cells being obtained from the hippocampus and the cerebellum of newborn rats. We report that CX3CL1 stimulates microglial cell migration but efficiently reduces basal neuronal movement, regardless of the brain source. The effect of CX3CL1 is pertussis toxin (PTX) sensitive and PI3K dependent on hippocampal neurons, while it is PTX sensitive, PI3K dependent, and ERK dependent on cerebellar granules. Interestingly, CX3CL1 also increases neuron adhesion to the extracellular matrix component laminin, with mechanisms dependent on PTX-sensitive G proteins, and on the ERK and PI3K pathways. Both the reduction of migration and the increase of neuron adhesion require the activation of the β1 and α6 integrin subunits with the exception of cerebellar neuron migration, which is only dependent on the β1 subunit. More importantly, in neurons, CX3CL1/CXCL12 cotreatment abolished the effect mediated by a single chemokine on chemotaxis and adhesion. In conclusion, our findings indicate that CX3CL1 reduces neuronal migration by increasing cell adhesion through integrin-dependent mechanisms in hippocampal and cerebellar neurons.

Collaboration


Dive into the Clotilde Lauro's collaboration.

Top Co-Authors

Avatar

Cristina Limatola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Myriam Catalano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Eusebi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Flavia Trettel

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Davide Ragozzino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Chece

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Raffaela Cipriani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Silvia Di Angelantonio

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge