Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clyde A. Smith is active.

Publication


Featured researches published by Clyde A. Smith.


Biochemistry | 1996

X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution.

Clyde A. Smith; Ivan Rayment

The structure of the vanadate-trapped ADP complex of a truncated head of Dictyostelium myosin II consisting of residues Asp 2-Asn 762 has been determined by molecular replacement at 1.9 A resolution and refined to a crystallographic R-factor of 19.4%. The crystals belong to the orthorhombic space group C2221 where a = 84.50 A, b = 145.4 A, and c = 152.8 A. The conformation of the protein is similar to that of MgADP.AlF4.SlDc [Fisher, A.J., et al. (1995) Biochemistry 34, 8960-8972]. The nucleotide binding site contains a complex between MgADP and vanadate where MgADP exhibits a very similar conformation to that seen in previous complexes. The vanadate ion adopts a trigonal bipyramidal coordination. The three equatorial oxygen ligands are fairly short, average 1.7 A, relative to a single bond distance of approximately 1.8 A and are coordinated to the magnesium ion, N zeta of Lys 185, and five other protein ligands. The apical coordination to the vanadate ion is filled by a terminal oxygen on the beta-phosphate of ADP and a water molecule at bond distances of 2.1 and 2.3 A, respectively. The long length of the apical bonds suggests that the bond order is considerably less than unity. This structure confirms the earlier suggestion that vanadate is a model for the transition state of ATP hydrolysis and thus provides insight into those factors that are responsible for catalysis. In particular, it shows that the protein ligands and water structure surrounding the gamma-phosphate pocket are oriented to stabilize a water molecule in an appropriate position for in-line nucleophilic attack on the gamma-phosphorus of ATP. This structure reveals also an orientation of the COOH-terminal region beyond Thr 688 which is very different from that observed in either MgADP.BeFx.SlDc or chicken skeletal myosin subfragment 1. This is consistent with the COOH-terminal region of the molecule playing an important role in the transduction of chemical energy of hydrolysis of ATP into mechanical movement.


Biophysical Journal | 1996

Active site comparisons highlight structural similarities between myosin and other P-loop proteins

Clyde A. Smith; Ivan Rayment

The phosphate binding loop (P-loop) is a common feature of a large number of enzymes that bind nucleotide whose consensus sequence is often used as a fingerprint for identifying new members of this group. We review here the binding sites of nine purine nucleotide binding proteins, with a focus on their relationship to the active site of myosin. This demonstrates that there is considerable conversation in the distribution and nature of the ligands that coordinate the triphosphate moiety. This comparison further suggests that at least myosin and the G-proteins utilize a similar mechanism for nucleotide hydrolysis.


Cell Death & Differentiation | 2008

Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans

Katrin Linke; Peter D. Mace; Clyde A. Smith; David L. Vaux; John Silke; Catherine L. Day

MDM2, a ubiquitin E3-ligase of the RING family, has a key role in regulating p53 abundance. During normal non-stress conditions p53 is targeted for degradation by MDM2. MDM2 can also target itself and MDMX for degradation. MDMX is closely related to MDM2 but the RING domain of MDMX does not possess intrinsic E3-ligase activity. Instead, MDMX regulates p53 abundance by modulating the levels and activity of MDM2. Dimerization, mediated by the conserved C-terminal RING domains of both MDM2 and MDMX, is critical to this activity. Here we report the crystal structure of the MDM2/MDMX RING domain heterodimer and map residues required for functional interaction with the E2 (UbcH5b). In both MDM2 and MDMX residues C-terminal to the RING domain have a key role in dimer formation. In addition we show that these residues are part of an extended surface that is essential for ubiquitylation in trans. This study provides a molecular basis for understanding how heterodimer formation leads to stabilization of MDM2, yet degradation of p53, and suggests novel targets for therapeutic intervention.


Journal of Biological Chemistry | 2008

Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment.

Peter D. Mace; Katrin Linke; Rebecca Feltham; Frances-Rose Schumacher; Clyde A. Smith; David L. Vaux; John Silke; Catherine L. Day

Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death that are highly expressed in many cancers. Cell death caused by antagonists that bind to IAP proteins is associated with their ubiquitylation and degradation. The RING domain at the C terminus of IAP proteins is pivotal. Here we report the crystal structures of the cIAP2 RING domain homodimer alone, and bound to the ubiquitin-conjugating (E2) enzyme UbcH5b. These structures show that small changes in the RING domain accompany E2 binding. By mutating residues at the E2-binding surface, we show that autoubiquitylation is required for regulation of IAP abundance. Dimer formation is also critical, and mutation of a single C-terminal residue abrogated dimer formation and E3 ligase activity was diminished. We further demonstrate that disruption of E2 binding, or dimerization, stabilizes IAP proteins against IAP antagonists in vivo.


Acta Crystallographica Section D-biological Crystallography | 2008

New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection

S. Michael Soltis; Aina E. Cohen; Ashley M. Deacon; Thomas Eriksson; Ana Gonzalez; Scott E. McPhillips; Hsui Chui; Pete W. Dunten; Michael Hollenbeck; Irimpan I. Mathews; Mitch Miller; Penjit Moorhead; R. Paul Phizackerley; Clyde A. Smith; Jinhu Song; Henry van dem Bedem; Paul J. Ellis; Peter Kuhn; Timothy M. McPhillips; Nicholas K. Sauter; Kenneth Sharp; Irina Tsyba; Guenter Wolf

Through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface, SSRL researchers have screened over 200 000 biological crystals for diffraction quality in an automated fashion. Three quarters of SSRL researchers are using these data-collection tools from remote locations.


Current Drug Targets - Infectious Disorders | 2002

Aminoglycoside Antibiotic Resistance by Enzymatic Deactivation

Clyde A. Smith; Edward N. Baker

Acquired resistance to the aminoglycoside family of antibiotics has rendered this large and important family of compounds virtually unusable. Resistance is primarily mediated by three classes of enzymes, typically residing on transposable elements in resistant bacteria. These enzymes, the phosphotransferases, acetyltransferases and adenyltransferases, chemically modify the aminoglycosides, which either interferes with drug transport or the binding of the drug at the site of antibacterial action, the 30S ribosomal subunit. The structures of several members of the aminoglycoside-modifying enzyme family are now known, and it is hoped that through a better understanding of these enzymes, both from a structural and mechanistic view-point, could lead to the development of either rationally-designed novel aminoglycosides, or specific structure-based enzyme inhibitors. Such developments could help to bring these compounds back to the forefront of modern antimicrobial chemotherapy. This review focuses on the structural details of the enzymes whose crystal structures are known and on the implications of these findings for devising novel strategies to overcome resistance to this broad class of antibiotics.


International Journal of Cancer | 2003

Loss of folylpoly-γ-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines

Esti Liani; Lilah Rothem; Marlene A. Bunni; Clyde A. Smith; Gerrit Jansen; Yehuda G. Assaraf

We have studied the molecular basis of drug resistance in human CCRF‐CEM leukemia cells exposed to high dose intermittent pulses of novel polyglutamatable antifolates that target various folate‐dependent enzymes. These include the dihydrofolate reductase (DHFR) inhibitors edatrexate, methotrexate and aminopterin, the thymidylate synthase (TS) inhibitors ZD1694 and GW1843, the glycinamide ribonucleotide formyltransferase (GARTF) inhibitor DDATHF as well as the multitargeted antifolate LY231514 inhibiting both TS, DHFR and GARTF. Fourteen antifolate‐resistant sublines were isolated, 11 of which displayed a drug resistance phenotype that was based on impaired folylpoly‐γ‐glutamate synthetase (FPGS) activity as these cell lines: 1) typically lost 90–99% of parental FPGS activity; 2) expressed 1.4–3.3‐fold less FPGS mRNA (only 4 cell lines); 3) displayed up to 105‐fold resistance to polyglutamylation‐dependent antifolates including ZD1694 and MTA; 4) retained sensitivity to polyglutamylation‐independent antifolates including ZD9331 and PT523; 5) were up to 19‐fold hypersensitive to the lipid‐soluble antifolates trimetrexate and AG377; 6) had a normal or a small decrease in [3H]MTX transport; and 7) had a 2.1–8.3‐fold decreased cellular folate pools and a consequently increased folate growth requirement. The remaining 3 antifolate‐resistant sublines lost 94–97% of parental [3H]MTX transport and thus displayed a high level resistance to all hydrophilic antifolates. To screen for mutations in the hFPGS gene, we devised an RT‐PCR single strand conformational polymorphism (SSCP) assay. RT‐PCR‐SSCP analysis and DNA sequencing showed that only a single FPGS‐deficient subline harbored an FPGS mutation (Cys346Phe). Three‐dimensional modeling of the human FPGS based on the crystal structure of Lactobacillus casei FPGS suggested that this mutation maps to the active site and interferes with the catalytic activity of the enzyme due to a putative bulky clash between the mutant Phe346 and a native Phe350 within α‐helix A10 in a highly conserved C‐terminal hydrophobic core. This was consistent with a 23‐fold decreased affinity of the mutant Cys346Phe FPGS for L‐glutamate. We conclude that decreased FPGS activity is a dominant mechanism of resistance to polyglutamylation‐dependent novel antifolates upon a high‐dose intermittent exposure schedule. The finding that cells may exhibit 5 orders of magnitude of resistance to polyglutamylation‐dependent antifolates but in the same time retain parental sensitivity or hypersensitivity to polyglutamylation‐independent antifolates or lipophilic antifolates offers a potentially promising treatment strategy in the overcoming of FPGS‐based anticancer drug resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Goniometer-based femtosecond crystallography with X-ray free electron lasers

Aina E. Cohen; S. Michael Soltis; Ana Gonzalez; Laura Aguila; Roberto Alonso-Mori; Christopher O. Barnes; Elizabeth L. Baxter; Winnie Brehmer; Aaron S. Brewster; Axel T. Brunger; Guillermo Calero; Joseph F. Chang; Matthieu Chollet; Paul Ehrensberger; Thomas Eriksson; Yiping Feng; Johan Hattne; Britt Hedman; Michael Hollenbeck; James M. Holton; Stephen Keable; Brian K. Kobilka; Elena G. Kovaleva; Andrew C. Kruse; Henrik T. Lemke; Guowu Lin; Artem Y. Lyubimov; Aashish Manglik; Irimpan I. Mathews; Scott E. McPhillips

Significance The extremely short and bright X-ray pulses produced by X-ray free-electron lasers unlock new opportunities in crystallography-based structural biology research. Efficient methods to deliver crystalline material are necessary due to damage or destruction of the crystal by the X-ray pulse. Crystals for the first experiments were 5 µm or smaller in size, delivered by a liquid injector. We describe a highly automated goniometer-based approach, compatible with crystals of larger and varied sizes, and accessible at cryogenic or ambient temperatures. These methods, coupled with improvements in data-processing algorithms, have resulted in high-resolution structures, unadulterated by the effects of radiation exposure, from only 100 to 1,000 diffraction images. The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.


Journal of Biological Chemistry | 2005

The Crystal Structure of Rv1347c, a Putative Antibiotic Resistance Protein from Mycobacterium tuberculosis, Reveals a GCN5-related Fold and Suggests an Alternative Function in Siderophore Biosynthesis*

Graeme L. Card; Neil A. Peterson; Clyde A. Smith; Bernhard Rupp; Brian M. Schick; Edward N. Baker

Mycobacterium tuberculosis, the cause of tuberculosis, is a devastating human pathogen. The emergence of multidrug resistance in recent years has prompted a search for new drug targets and for a better understanding of mechanisms of resistance. Here we focus on the gene product of an open reading frame from M. tuberculosis, Rv1347c, which is annotated as a putative aminoglycoside N-acetyltransferase. The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore. The crystal structure of Rv1347c was determined by multiwavelength anomalous diffraction phasing from selenomethionine-substituted protein and refined at 2.2 Å resolution (r = 0.227, Rfree = 0.257). The protein is monomeric, with a fold that places it in the GCN5-related N-acetyltransferase (GNAT) family of acyltransferases. Features of the structure are an acyl-CoA binding site that is shared with other GNAT family members and an adjacent hydrophobic channel leading to the surface that could accommodate long-chain acyl groups. Modeling the postulated substrate, the Nϵ-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis.


Journal of the American Chemical Society | 2010

AN ANTIBIOTIC-RESISTANCE ENZYME FROM A DEEP-SEA BACTERIUM

Marta Toth; Clyde A. Smith; Hilary Frase; Shahriar Mobashery; Sergei B. Vakulenko

We describe herein a highly proficient class A beta-lactamase OIH-1 from the bacterium Oceanobacillus iheyensis, whose habitat is the sediment at a depth of 1050 m in the Pacific Ocean. The OIH-1 structure was solved by molecular replacement and refined at 1.25 A resolution. OIH-1 has evolved to be an extremely halotolerant beta-lactamase capable of hydrolyzing its substrates in the presence of NaCl at saturating concentration. Not only is this the most highly halotolerant bacterial enzyme structure known to date, it is also the highest resolution halophilic protein structure yet determined. Evolution of OIH-1 in the salinity of the ocean has resulted in a molecular surface that is coated with acidic residues, a marked difference from beta-lactamases of terrestrial sources. OIH-1 is the first example of an antibiotic-resistance enzyme that has evolved in the depths of the ocean in isolation from clinical selection and gives us an extraordinary glimpse into protein evolution under extreme conditions. It represents evidence for the existence of a reservoir of antibiotic-resistance enzymes in nature among microbial populations from deep oceanic sources.

Collaboration


Dive into the Clyde A. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary Frase

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Rayment

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge