Cody Youngbull
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cody Youngbull.
Nano Letters | 2011
Qian Mei; Xixi Wei; Fengyu Su; Yan Liu; Cody Youngbull; Roger H. Johnson; Stuart Lindsay; Hao Yan; Deirdre R. Meldrum
Scaffolded DNA origami, a method to create self-assembled nanostructures with spatially addressable features, has recently been used to develop water-soluble molecular chips for label-free RNA detection, platforms for deterministic protein positioning, and single molecule reaction observatories. These applications highlight the possibility of exploiting the unique properties and biocompatibility of DNA nanostructures in live, cellular systems. Herein, we assembled several DNA origami nanostructures of differing shape, size and probes, and investigated their interaction with lysate obtained from various normal and cancerous cell lines. We separated and analyzed the origami-lysate mixtures using agarose gel electrophoresis and recovered the DNA structures for functional assay and subsequent microscopic examination. Our results demonstrate that DNA origami nanostructures are stable in cell lysate and can be easily separated from lysate mixtures, in contrast to natural, single- and double-stranded DNA. Atomic force microscope (AFM) and transmission electron microscope (TEM) images show that the DNA origami structures are fully intact after separation from cell lysates and hybridize to their targets, verifying the superior structural integrity and functionality of self-assembled DNA origami nanostructures relative to conventional oligonucleotides. The stability and functionality of DNA origami structures in cell lysate validate their use for biological applications, for example, as programmable molecular rafts or disease detection platforms.
Journal of the American Chemical Society | 2011
Xianfeng Zhou; Fengyu Su; Yanqing Tian; Cody Youngbull; Roger H. Johnson; Deirdre R. Meldrum
We describe the synthesis, properties, and application of a new fluorescent potassium chemosensor, KS2, for K(+) sensing and imaging in live cells. By virtue of a strong electron-withdrawing group, 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF), with a triazacryptand ligand, the new sensor can respond to K(+) up to 1.6 M. This is the first highly selective intracellular sensor suitable for sensing K(+) over a broad and high concentration range. Confocal fluorescence microscopy has established the utility of KS2 for live-cell K(+) detection. The application of KS2 combined with other sensors will be of great benefit for investigating cellular metabolism, detecting and diagnosing diseases including cancer, and monitoring responses to therapy.
Nature Communications | 2016
Andrew C. Larsen; Matthew R. Dunn; Andrew Hatch; Sujay P. Sau; Cody Youngbull; John Chaput
Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson–Crick base pairing.
PLOS ONE | 2012
Fengyu Su; Ruhaniyah Alam; Qian Mei; Yanqing Tian; Cody Youngbull; Roger H. Johnson; Deirdre R. Meldrum
Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.
Journal of Biomedical Optics | 2012
Laimonas Kelbauskas; Shashanka Ashili; Jeff Houkal; Dean Smith; Aida Mohammadreza; Kristen Lee; Jessica Forrester; Ashok Kumar; Yasser H. Anis; Thomas G. Paulson; Cody Youngbull; Yanqing Tian; Mark R. Holl; Roger H. Johnson; Deirdre R. Meldrum
Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the systems capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.
Micromachines | 2012
Wenjie Zhang; David H. Frakes; Haithem Babiker; Shih Hui Chao; Cody Youngbull; Roger H. Johnson; Deirdre R. Meldrum
Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1) their ability to rotate biological cells in a stable and precise manner; and (2) their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV) was used to provide a detailed characterization of flows in the new design. Simulated and experimental results
Microfluidics, BioMEMS, and Medical Microsystems IX | 2011
Shashanka Ashili; Laimonas Kelbauskas; Jeff Houkal; Dean Smith; Yanqing Tian; Cody Youngbull; Haixin Zhu; Yasser H. Anis; Michael Hupp; Kristen Lee; Ashok Kumar; Juan Vela; Andrew Shabilla; Roger H. Johnson; Mark R. Holl; Deirdre R. Meldrum
We have developed a fully automated platform for multiparameter characterization of physiological response of individual and small numbers of interacting cells. The platform allows for minimally invasive monitoring of cell phenotypes while administering a variety of physiological insults and stimuli by means of precisely controlled microfluidic subsystems. It features the capability to integrate a variety of sensitive intra- and extra-cellular fluorescent probes for monitoring minute intra- and extra-cellular physiological changes. The platform allows for performance of other, post- measurement analyses of individual cells such as transcriptomics. Our method is based on the measurement of extracellular metabolite concentrations in hermetically sealed ~200-pL microchambers, each containing a single cell or a small number of cells. The major components of the system are a) a confocal laser scan head to excite and detect with single photon sensitivity the emitted photons from sensors; b) a microfluidic cassette to confine and incubate individual cells, providing for dynamic application of external stimuli, and c) an integration module consisting of software and hardware for automated cassette manipulation, environmental control and data collection. The custom-built confocal scan head allows for fluorescence intensity detection with high sensitivity and spatial confinement of the excitation light to individual pixels of the sensor area, thus minimizing any phototoxic effects. The platform is designed to permit incorporation of multiple optical sensors for simultaneous detection of various metabolites of interest. The modular detector structure allows for several imaging modalities, including high resolution intracellular probe imaging and extracellular sensor readout. The integrated system allows for simulation of physiologically relevant microenvironmental stimuli and simultaneous measurement of the elicited phenotypes. We present details of system design, system characterization and metabolic response analysis of individual eukaryotic cells.
Proceedings of SPIE | 2011
Laimonas Kelbauskas; Shashanka Ashili; Jeff Houkal; Dean Smith; Aida Mohammadreza; Kristen Lee; Ashok Kumar; Yasser H. Anis; Tom Paulson; Cody Youngbull; Yanqing Tian; Roger H. Johnson; Mark R. Holl; Deirdre R. Meldrum
Non-genetic intercellular heterogeneity has been increasingly recognized as one of the key factors in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis and drug resistance. Many diseases, including cancer, originate in a single or a few cells. Early detection and characterization of these abnormal cells can provide new insights into the pathogenesis and serve as a tool for better disease diagnosis and treatment. We report on a novel technology for multiparameter physiological phenotype characterization at the single-cell level. It is based on real-time measurements of concentrations of several metabolites by means of extracellular optical sensors in microchambers of sub-nL volume containing single cells. In its current configuration, the measurement platform features the capability to detect oxygen consumption rate and pH changes under normoxic and hypoxic conditions at the single-cell level. We have conceived, designed and developed a semi-automated method for single-cell manipulation and loading into microwells utilizing custom, high-precision fluid handling at the nanoliter scale. We present the results of a series of measurements of oxygen consumption rates (OCRs) of single human metaplastic esophageal epithelial cells. In addition, to assess the effects of cell-to-cell interactions, we have measured OCRs of two and three cells placed in a single well. The major advantages of the approach are a) multiplexed characterization of cell phenotype at the single-cell level, b) minimal invasiveness due to the distant positioning of sensors, and c) flexibility in terms of accommodating measurements of other metabolites or biomolecules of interest.
Sensors and Actuators B-chemical | 2010
Yanqing Tian; Bradley R. Shumway; Weimin Gao; Cody Youngbull; Mark R. Holl; Roger H. Johnson; Deirdre R. Meldrum
Biomaterials | 2011
Xianfeng Zhou; Fengyu Su; Weimin Gao; Yanqing Tian; Cody Youngbull; Roger H. Johnson; Deirdre R. Meldrum