Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Coen Campsteijn is active.

Publication


Featured researches published by Coen Campsteijn.


Science | 2010

Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate

Simon Henriet; Sutada Mungpakdee; Jean-Marc Aury; Corinne Da Silva; Henner Brinkmann; Jana Mikhaleva; Lisbeth Charlotte Olsen; Claire Jubin; Cristian Cañestro; Jean-Marie Bouquet; Gemma Danks; Julie Poulain; Coen Campsteijn; Marcin Adamski; Ismael Cross; Fekadu Yadetie; Matthieu Muffato; Alexandra Louis; Stephen Butcher; Georgia Tsagkogeorga; Anke Konrad; Sarabdeep Singh; Marit Flo Jensen; Evelyne Huynh Cong; Helen Eikeseth-Otteraa; Benjamin Noel; Véronique Anthouard; Betina M. Porcel; Rym Kachouri-Lafond; Atsuo Nishino

Ocean Dweller Sequenced The Tunicates, which include the solitary free-swimming larvaceans that are a major pelagic component of our oceans, are a basal lineage of the chordates. In order to investigate the major evolutionary transition represented by these organisms, Denoeud et al. (p. 1381, published online 18 November) sequenced the genome of Oikopleura dioica, a chordate placed by phylogeny between vertebrates and amphioxus. Surprisingly, the genome showed little conservation in genome architecture when compared to the genomes of other animals. Furthermore, this highly compacted genome contained intron gains and losses, as well as species-specific gene duplications and losses that may be associated with development. Thus, contrary to popular belief, global similarities of genome architecture from sponges to humans are not essential for the preservation of ancestral morphologies. A metazoan genome departs from the organization that appears rigidly established in other animal phyla. Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.


Nature | 2015

Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing

Marina Vietri; Kay Oliver Schink; Coen Campsteijn; Catherine Sem Wegner; Sebastian W. Schultz; Liliane Christ; Sigrid B. Thoresen; Andreas Brech; Camilla Raiborg; Harald Stenmark

At the onset of metazoan cell division the nuclear envelope breaks down to enable capture of chromosomes by the microtubule-containing spindle apparatus. During anaphase, when chromosomes have separated, the nuclear envelope is reassembled around the forming daughter nuclei. How the nuclear envelope is sealed, and how this is coordinated with spindle disassembly, is largely unknown. Here we show that endosomal sorting complex required for transport (ESCRT)-III, previously found to promote membrane constriction and sealing during receptor sorting, virus budding, cytokinesis and plasma membrane repair, is transiently recruited to the reassembling nuclear envelope during late anaphase. ESCRT-III and its regulatory AAA (ATPase associated with diverse cellular activities) ATPase VPS4 are specifically recruited by the ESCRT-III-like protein CHMP7 to sites where the reforming nuclear envelope engulfs spindle microtubules. Subsequent association of another ESCRT-III-like protein, IST1, directly recruits the AAA ATPase spastin to sever microtubules. Disrupting spastin function impairs spindle disassembly and results in extended localization of ESCRT-III at the nuclear envelope. Interference with ESCRT-III functions in anaphase is accompanied by delayed microtubule disassembly, compromised nuclear integrity and the appearance of DNA damage foci in subsequent interphase. We propose that ESCRT-III, VPS4 and spastin cooperate to coordinate nuclear envelope sealing and spindle disassembly at nuclear envelope–microtubule intersection sites during mitotic exit to ensure nuclear integrity and genome safeguarding, with a striking mechanistic parallel to cytokinetic abscission.


Trends in Biochemical Sciences | 2017

Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery

Liliane Christ; Camilla Raiborg; Eva M. Wenzel; Coen Campsteijn; Harald Stenmark

The endosomal sorting complex required for transport (ESCRT) machinery is an assembly of protein subcomplexes (ESCRT I-III) that cooperate with the ATPase VPS4 to mediate scission of membrane necks from the inside. The ESCRT machinery has evolved as a multipurpose toolbox for mediating receptor sorting, membrane remodeling, and membrane scission, with ESCRT-III as the major membrane-remodeling component. Cellular membrane scission processes mediated by ESCRT-III include biogenesis of multivesicular endosomes, budding of enveloped viruses, cytokinetic abscission, neuron pruning, plasma membrane wound repair, nuclear pore quality control, nuclear envelope reformation, and nuclear envelope repair. We describe here the involvement of the ESCRT machinery in these processes and review current models for how ESCRT-III-containing multimeric filaments serve to mediate membrane remodeling and scission.


Nature Cell Biology | 2014

ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4

Sigrid B. Thoresen; Coen Campsteijn; Marina Vietri; Kay Oliver Schink; Knut Liestøl; Jens S. Andersen; Camilla Raiborg; Harald Stenmark

During the final stage of cell division, cytokinesis, the Aurora-B-dependent abscission checkpoint (NoCut) delays membrane abscission to avoid DNA damage and aneuploidy in cells with chromosome segregation defects. This arrest depends on Aurora-B-mediated phosphorylation of CHMP4C, a component of the endosomal sorting complex required for transport (ESCRT) machinery that mediates abscission, but the mechanism remains unknown. Here we describe ANCHR (Abscission/NoCut Checkpoint Regulator; ZFYVE19) as a key regulator of the abscission checkpoint, functioning through the most downstream component of the ESCRT machinery, the ATPase VPS4. In concert with CHMP4C, ANCHR associates with VPS4 at the midbody ring following DNA segregation defects to control abscission timing and prevent multinucleation in an Aurora-B-dependent manner. This association prevents VPS4 relocalization to the abscission zone and is relieved following inactivation of Aurora B to allow abscission. We propose that the abscission checkpoint is mediated by ANCHR and CHMP4C through retention of VPS4 at the midbody ring.


Journal of Cell Biology | 2016

ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission

Liliane Christ; Eva M. Wenzel; Knut Liestøl; Camilla Raiborg; Coen Campsteijn; Harald Stenmark

Cytokinetic abscission, the final stage of cell division, is mediated by the ESCRT machinery. Here, Christ et al. dissect the regulation of ESCRT-III recruitment and abscission timing and identify an intersection with abscission checkpoint signaling in cells with chromatin bridges.


Current Opinion in Cell Biology | 2016

Novel ESCRT functions in cell biology: spiraling out of control?

Coen Campsteijn; Marina Vietri; Harald Stenmark

The endosomal sorting complex required for transport (ESCRT), originally identified for its role in endosomal protein sorting and biogenesis of multivesicular endosomes (MVEs), has proven to be a versatile machinery for involution and scission of narrow membrane invaginations filled with cytosol. Budding of enveloped viruses and cytokinetic abscission were early described functions for the ESCRT machinery, and recently a number of new ESCRT functions have emerged. These include cytokinetic abscission checkpoint control, plasma membrane repair, exovesicle release, quality control of nuclear pore complexes, neuron pruning, and sealing of the newly formed nuclear envelope. Here we review these novel ESCRT mechanisms and discuss similarities and differences between the various ESCRT-dependent activities.


Nucleic Acids Research | 2013

OikoBase: a genomics and developmental transcriptomics resource for the urochordate Oikopleura dioica

Gemma Danks; Coen Campsteijn; Mruyunjaya Parida; Stephen Butcher; Harsha Doddapaneni; Bolei Fu; Raul Petrin; Raghu Metpally; Boris Lenhard; Patrick Wincker; Daniel Chourrout; Eric M. Thompson; J. Robert Manak

We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.


Trends in Cell Biology | 2017

The Abscission Checkpoint: Making It to the Final Cut

Viola Nähse; Liliane Christ; Harald Stenmark; Coen Campsteijn

Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.


BMC Genomics | 2012

Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics.

Fekadu Yadetie; Stephen Butcher; Hilde Elise Førde; Coen Campsteijn; Jean-Marie Bouquet; Odd André Karlsen; Raghu Metpally; Eric M. Thompson; J. Robert Manak; Anders Goksøyr; Daniel Chourrout

BackgroundAnimals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo).ResultsOikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways.ConclusionsOikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.


Current Opinion in Cell Biology | 2016

Closing a gap in the nuclear envelope

Marina Vietri; Harald Stenmark; Coen Campsteijn

The nuclear envelope (NE) ensures nucleo-cytoplasmic compartmentalization, with trafficking of macromolecules across this double membrane controlled by embedded nuclear pore complexes (NPCs). The NE and associated proteins are dismantled during open mitosis and reestablishment of this barrier during mitotic exit requires dynamic remodeling of endoplasmic reticulum (ER) membranes and coordination with NPC reformation, with NPC deposition continuing during subsequent interphase. In this review, we discuss recent progress in our understanding of NE reformation and nuclear pore complex generation, with special focus on work implicating the endosomal sorting complex required for transport (ESCRT) membrane remodeling machinery in these events.

Collaboration


Dive into the Coen Campsteijn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge