Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colette Boskovic is active.

Publication


Featured researches published by Colette Boskovic.


Angewandte Chemie | 2010

Terbium Polyoxometalate Organic Complexes: Correlation of Structure with Luminescence Properties†

Chris Ritchie; Evan G. Moore; Manfred Speldrich; Paul Kögerler; Colette Boskovic

Light up the POMs: A luminescent lanthanoid complex with polyoxometalate (POM) and organic ligands has been structurally characterized (see picture). Comparison of this octanuclear TbIII complex of 2-picolinate and tungstoarsenate ligands with a dinuclear relative reveals the role of the organic ligands as chromophores, identifies the luminescent Tb centers, and determines the relationship between POM coordination mode and luminescence quenching.


Inorganic Chemistry | 2011

Utilizing the Adaptive Polyoxometalate [As2W19O67(H2O)]14– To Support a Polynuclear Lanthanoid-Based Single-Molecule Magnet

Chris Ritchie; Manfred Speldrich; Robert W. Gable; Lorenzo Sorace; Paul Kögerler; Colette Boskovic

Five members of a new family of polyoxometalate (POM)-ligated tetranuclear rare earth metal complexes have been synthesized and characterized. These compounds have the general formula (HDABCO)(8)H(5)Li(8)[Ln(4)As(5)W(40)O(144)(H(2)O)(10)(gly)(2)]·25H(2)O [Ln = Gd (1), Tb (2), Dy (3), Ho (4) and Y = (5), HDABCO = monoprotonated 1,4-diazabicyclooctane, gly = glycine] and were synthesized from the preformed POM precursor [As(2)W(19)O(67)(H(2)O)](14-). The structure is comprised of two {As(2)W(19)O(68)} building blocks linked by a unit containing four rare earth ions and two additional tungsten centers, with the two glycine ligands playing a key bridging role. Two crystallographically distinct rare earth ions are present in each complex, both of which possess axially compressed, approximate square antiprismatic coordination geometry. The variable-temperature magnetic susceptibility profiles for 2-4 are dominated by population/depopulation of the M(J) sublevels of the relevant ground terms, and fitting of the data has afforded the ligand field parameters in each case, from which the energies of the M(J) sublevels can be calculated. Alternating current magnetic susceptibility data have revealed the onset of slow magnetic relaxation for 3, with the energy barrier to magnetization reversal determined to be 3.9(1) K. As for other lanthanoid complexes that display slow magnetic relaxation, this energy barrier is due to the splitting of the M(J) sublevels of the Dy(3+) ions such that the ground sublevel has a relatively large |M(J)| value, thereby affording Ising-type magnetic anisotropy. This complex is thus the first POM-supported polynuclear lanthanoid-based SMM. Simulation of the W-band EPR spectrum of 1 has afforded the spin Hamiltonian parameters for this species, while the X-band EPR spectrum of 3 indicates the presence of a non-negligible fourth-order transverse component of the anisotropy, which is responsible for the small effective energy barrier observed for 3 and the absence of slow magnetic relaxation for 4.


Inorganic Chemistry | 2012

Sensitization of lanthanoid luminescence by organic and inorganic ligands in lanthanoid-organic-polyoxometalates

Chris Ritchie; Valérie Baslon; Evan G. Moore; Christian Reber; Colette Boskovic

The reaction of terbium and europium salts with the lacunary polyxometalate (POM) [As(2)W(19)O(67)(H(2)O)](14-) and 2-picolinic acid (picH) affords the ternary lanthanoid-organic-polyoxometalate (Ln-org-POM) complexes [Tb(2)(pic)(H(2)O)(2)(B-β-AsW(8)O(30))(2)(WO(2)(pic))(3)](10-) (1), [Tb(8)(pic)(6)(H(2)O)(22)(B-β-AsW(8)O(30))(4)(WO(2)(pic))(6)](12-) (2), and [Eu(8)(pic)(6)(H(2)O)(22)(B-β-AsW(8)O(30))(4)(WO(2)(pic))(6)](12-) (3). A detailed synthetic investigation has established the conditions required to isolate pure bulk samples of the three complexes as the mixed salts H(0.5)K(8.5)Na[1]·30H(2)O, K(4)Li(4)H(4)[2]·58H(2)O, and Eu(1.66)K(7)[3]·54H(2)O, each of which has been characterized by single crystal X-ray diffraction. Complexes 2 and 3 are isostructural and can be considered to be composed of two molecules of 1 linked through an inversion center with four additional picolinate-chelated lanthanoid centers. When irradiated with a laboratory UV lamp at room temperature, compounds K(4)Li(4)H(4)[2]·58H(2)O and Eu(1.66)K(7)[3]·54H(2)O visibly luminesce green and red, respectively, while compound H(0.5)K(8.5)Na[1]·30H(2)O is not luminescent. A variable temperature photophysical investigation of the three compounds has revealed that both the organic picolinate ligands and the inorganic POM ligands sensitize the lanthanoid(III) luminescence, following excitation with UV light. However, considerably different temperature dependencies are observed for Tb(III) versus Eu(III) through the two distinct sensitization pathways.


Physical Review B | 2002

Spin-parity dependent tunneling of magnetization in single-molecule magnets

Wolfgang Wernsdorfer; Sumit Bhaduri; Colette Boskovic; George Christou; David N. Hendrickson

Single-molecule magnets facilitate the study of quantum tunneling of magnetization at the mesoscopic level. The spin-parity effect is among the fundamental predictions that have yet to be clearly observed. It is predicted that quantum tunneling is suppressed at zero transverse field if the total spin of the magnetic system is half-integer (Kramers degeneracy) but is allowed in integer spin systems. The Landau-Zener method is used to measure the tunnel splitting as a function of transverse field. Spin-parity dependent tunneling is established by comparing the transverse field dependence of the tunnel splitting of integer and half-integer spin systems.


Inorganic Chemistry Communications | 2002

New tri- and tetranuclear transition metal spin clusters incorporating a versatile polydentate Schiff base ligand

Colette Boskovic; Eduard B. Rusanov; Helen Stoeckli-Evans; Hans U. Güdel

Abstract A trinuclear Fe(III) complex [Fe3(OAc)3L3] (1), a tetranuclear Mn(III) complex [Mn4Cl4L4] (2) and a tetranuclear Ni(II) complex [Ni4(MeOH)4L4] (3) have been synthesized from the reaction of simple metal salts with ligands derived from salicylidene-2-ethanolamine (H2L). Structural characterization of the three complexes reveals distinctly different topologies, despite the similar coordination modes of the ligand L2−. Preliminary magnetochemical studies have been performed and reveal spin ground states of S=1/2,8 and 4 for complexes 1, 2 and 3, respectively.


Dalton Transactions | 2010

Solvation effects on the valence tautomeric transition of a cobalt complex in the solid state

Yanyan Mulyana; Giordano Poneti; Boujemaa Moubaraki; Keith S. Murray; Brendan F. Abrahams; Lorenzo Sorace; Colette Boskovic

A detailed investigation of a valence tautomeric (VT) transition for the new complex [Co(III)(3,5-DBCat)(3,5-DBSQ)(py)₂]/[Co(II)(3,5-DBSQ)₂(py)₂] (1) is reported, where 3,5-DBCatH₂ is 3,5-di-tert-butyl-catechol, 3,5-DBSQH is 3,5-di-tert-butyl-semiquinone and py is pyridine. Complex 1 exists as a mixture of the two valence tautomers, with the relative proportion of each depending on the external conditions. Three differently solvated forms of the complex have been synthesized and variable temperature structural and magnetic investigations of one of these, 1·0.5py, reveals that this compound undergoes a thermally-induced VT transition from the [Co(III)(3,5-DBCat)(3,5-DBSQ)(py)₂] tautomer at temperatures below 150 K to a 1 : 1 mixture of the two tautomers at temperatures above 300 K. The VT transition may also be photo-induced at 9 K, affording a similar mixture of the two tautomers. In both cases the incomplete transition is attributed to the presence of π-π stacking interactions between the pyridine molecules of solvation and one of the two crystallographically independent complex molecules, which inhibits the expansion of this molecule that would accompany a VT transition. Studies on alternatively solvated forms 1·2MeCN and 1·1.67hexane also suggest a significant dependence of the VT transition on solvation-induced packing effects and/or intermolecular interactions.


Dalton Transactions | 2009

Caesium-templated lanthanoid-containing polyoxotungstates

Firasat Hussain; Bernhard Spingler; Franziska Conrad; Manfred Speldrich; Paul Kögerler; Colette Boskovic; Greta R. Patzke

A family of novel lanthanoid-containing polytungstoarsenate(iii) polyanions with interesting structural features has been isolated: six lacunary {alpha-AsW(9)O(33)} building blocks comprising unusual pyramidal WO(5) units are templated by a caesium cation in a central cavity of the structure.


Analytical Chemistry | 1999

Coupled Electron- and Proton-Transfer Processes in the Reduction of α-[P2W18O62]6- and α-[H2W12O40]6- As Revealed by Simulation of Cyclic Voltammograms

Paul D. Prenzler; Colette Boskovic; Alan M. Bond, ,‡ and; Anthony G. Wedd

Quantitative analysis of the complex problem of coupled electron- and proton-transfer steps during reduction of the polyoxo anions α-[P(2)W(18)O(62)](6)(-) and α-[H(2)W(12)O(40)](6)(-) in aqueous NaCl (0.5 M) has been achieved by simulation of cyclic voltammograms (Rudolph, M.; Reddy, D. P.; Feldberg, S. W. Anal. Chem. 1994, 66, 589A) over wide ranges of anion concentration, pH, and scan rate. Since there are too many unknown parameters to attempt a one-step global form of simulation, a systematic, stepwise approach has been adopted by progressively accessing regimes of increasing voltammetric complexity. This protocol allows experimental behavior in each system over 5 orders of magnitude in proton concentration to be simulated by estimation of three protonation constants combined with experimentally determined reversible half-wave potentials for the two one-electron processes involved. Fast electron transfer and protonation kinetics are assumed. The importance of the values chosen for the diffusion coefficients of the proton and polyoxo anion species is considered. The simulations account for the fact that pairs of one-electron processes coalesce to give an apparent two-electron process in the pH range 1-6 for reduction of both anions.


Inorganic Chemistry | 2012

A Two-Step Valence Tautomeric Transition in a Dinuclear Cobalt Complex

Kerwyn G. Alley; Giordano Poneti; Jade B. Aitken; Rosalie K. Hocking; Boujemaa Moubaraki; Keith S. Murray; Brendan F. Abrahams; Hugh H. Harris; Lorenzo Sorace; Colette Boskovic

A dinuclear cobalt complex with cobalt centers bridged by a bis(dioxolene) ligand exhibits a rare two-step valence tautomeric transition.


Polyhedron | 2003

[Mn 18 ] 2+ and [Mn 21 ] 4+ single-molecule magnets

E C Sanudo; Euan K. Brechin; Colette Boskovic; Wolfgang Wernsdorfer; Jae Yoo; Akira Yamaguchi; T.R. Concolino; Khalil A. Abboud; Arnold L. Rheingold; Hidehiko Ishimoto; David N. Hendrickson; George Christou

Abstract The synthesis and structural characterization of the two new Mn complexes [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) and [Mn21O16(O2CMe)16(hmp)6(hmpH)2(pic)2(py)(H2O)](ClO4)4 (3) are presented, together with a detailed study of their magnetic properties. Complex 1 possesses a ground-state spin of S=13, and the ground-state spin for 3 is estimated to be S=17/2 or 19/2. Both complexes 1 and 3 are new examples of single-molecule magnets (SMMs), displaying frequency-dependent out-of-phase AC signals, as well as magnetization vs. DC field hysteresis at temperatures below 1 K. Complex 1 straddles the classical/quantum interface by also displaying quantum tunneling of the magnetization (QTM).

Collaboration


Dive into the Colette Boskovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Wernsdorfer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge