Colin A. Malcolm
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Colin A. Malcolm.
Insect Molecular Biology | 2004
Mylène Weill; Colin A. Malcolm; Fabrice Chandre; Knud Erik Mogensen; Arnaud Berthomieu; Maïté Marquine; Michel Raymond
High insecticide resistance resulting from insensitive acetylcholinesterase (AChE) has emerged in mosquitoes. A single mutation (G119S of the ace‐1 gene) explains this high resistance in Culex pipiens and in Anopheles gambiae. In order to provide better documentation of the ace‐1 gene and the effect of the G119S mutation, we present a three‐dimension structure model of AChE, showing that this unique substitution is localized in the oxyanion hole, explaining the insecticide insensitivity and its interference with the enzyme catalytic functions. As the G119S creates a restriction site, a simple PCR test was devised to detect its presence in both A. gambiae and C. pipiens, two mosquito species belonging to different subfamilies (Culicinae and Anophelinae). It is possibile that this mutation also explains the high resistance found in other mosquitoes, and the present results indicate that the PCR test detects the G119S mutation in the malaria vector A. albimanus. The G119S has thus occurred independently at least four times in mosquitoes and this PCR test is probably of broad applicability within the Culicidae family.
Journal of Neurochemistry | 2002
Denis Bourguet; Michel Raymond; Didier Fournier; Colin A. Malcolm; Jean-Pierre Toutant; Martine Arpagaus
Abstract: Two acetylcholinesterases (AChEs), AChE1 and AChE2, differing in substrate specificity and in some aspects of inhibitor sensitivity, have been characterized in the mosquito Culex pipiens. The results of ultracentrifugation in sucrose gradients and nondenaturing gel electrophoresis of AChE activity peak fractions show that each AChE is present as two molecular forms: one amphiphilic dimer possessing a glycolipid anchor and one hydrophilic dimer that does not interact with nondenaturing detergents. Treatment by phosphatidylinositol‐specific phospholipase C converts each type of amphiphilic dimer into the corresponding hydrophilic dimer. Molecular forms of AChE1 have a lower electrophoretic mobility than those of AChE2. However, amphiphilic dimers and hydrophilic dimers have similar sedimentation coefficients (5.5S and 6.5S, respectively). AChE1 and AChE2 dimers, amphiphilic or hydrophilic, resist dithiothreitol reduction under conditions that allow reduction of Drosophila AChE dimers. In the insecticide‐susceptible strain S‐LAB, AChE1 is inhibited by 5 × 10−4M propoxur (a carbamate insecticide), whereas AChE2 is resistant. All animals are killed by this concentration of propoxur, indicating that only AChE1 fulfills the physiological function of neurotransmitter hydrolysis at synapses. In the insecticide‐resistant strain, MSE, there is no mortality after exposure to 5 × 10−4M propoxur: AChE2 sensitivity to propoxur is unchanged, whereas AChE1 is now resistant to 5 × 10−4M propoxur. The possibility that AChE1 and AChE2 are products of tissue‐specific posttranslational modifications of a single gene is discussed, but we suggest, based on recent results obtained at the molecular level in mosquitoes, that they are encoded by two different genes.
Insect Molecular Biology | 1998
Colin A. Malcolm; Denis Bourguet; A. Ascolillo; S. Rooker; C. E. Garvey; Lucinda M. C. Hall; Nicole Pasteur; Michel Raymond
An acetylcholinesterase (AChE) gene, Ace.x, showing 93% identity of deduced amino acid sequence to Anopheles stephensi Ace has been cloned from a Culex pipiens strain homozygous for insensitive AChE (iAChE) mediated insecticide resistance. DNA sequence of genomic DNA clones identified exons 2–5. RFLP of six clones indicated four possible alleles. Linkage analysis located Ace.x to chromosome I, less than 0.8 centimorgans from the sex locus, whereas the locus conferring resistance was 2.0 centimorgans from plum‐eye on chromosome II. Ace.1 coding for AChE1, which is associated with resistance, is therefore autosomal. We propose that Ace.x is the recently postulated Ace.2 coding for the biochemically distinct AChE2, which is not associated with resistance.
Malaria Journal | 2009
Philippos Aris Papathanos; Hervé C Bossin; Mark Q. Benedict; Flaminia Catteruccia; Colin A. Malcolm; Luke Alphey; Andrea Crisanti
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.
Cellular and Molecular Neurobiology | 1991
Lucinda M. C. Hall; Colin A. Malcolm
Summary1.The acetylcholinesterase (AChE) gene from the important malaria vectorAnopheles stephensi has been isolated by homology to theDrosophila acetylcholinesterase gene.2.The complete sequence and intron-exon organization has been determined. The encoded protein has 69% identity toDrosophila AChE and 38 and 36% identity toTorpedo AChE and human butyrylcholinesterase, respectively.
Malaria Journal | 2009
Tellal B Ageep; Jonathan Cox; Mo'awia M Hassan; Bart G. J. Knols; Mark Q. Benedict; Colin A. Malcolm; Ahmed Babiker; Badria B El Sayed
BackgroundMalaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations.MethodsMonthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe) adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS), Geographical Information Systems (GIS) and the Global Positioning System (GPS) was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height.ResultsOf a total of 3,349 aquatic habitats sampled, 321 (9.6%) contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals – often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not evident in vector populations breeding in artificial water sources away from the river.ConclusionThe GIS-based survey strategy developed in this study provides key data on the population dynamics of An. arabiensis in Northern State. Quantitative estimates of the contributions of various habitat types and their proximity to settlements provide a basis for planning a strategy for reducing malaria risk by elimination of the vector population.
Malaria Journal | 2008
Michelle Eh Helinski; Mo'awia M Hassan; Waleed M. El-Motasim; Colin A. Malcolm; Bart G. J. Knols; Badria El-Sayed
BackgroundThe work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described.MethodsMosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed.ResultsMinor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females.ConclusionIt is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.
Malaria Journal | 2009
Badria B El Sayed; Colin A. Malcolm; Ahmed Babiker; Elfatih M Malik; Mohammed A. H. El Tayeb; Nageeb S. Saeed; Abdel Hameed Nugud; Bart G. J. Knols
The global malaria situation, especially in Africa, and the problems frequently encountered in chemical control of vectors such as insecticide resistance, emphasize the urgency of research, development and implementation of new vector control technologies that are applicable at regional and local levels. The successful application of the sterile insect technique (SIT) for the control of the New World screwworm Cochliomyia hominivorax and several species of fruit flies has given impetus to the use of this method for suppression or elimination of malaria vectors in some areas of Africa including Northern State of Sudan. The research and development phase of the Northern State feasibility study has been started. Sudanese stakeholders are working side-by-side with the International Atomic Energy Agency in the activities of this important phase. Several ethical, legal and social issues associated with this approach arose during this phase of the project. They need to be seriously considered and handled with care. In this paper, these issues are described, and the current and proposed activities to overcome potential hurdles to ensure success of the project are listed.
Malaria Journal | 2009
Colin A. Malcolm; Badria B El Sayed; Ahmed Babiker; Romain Girod; Didier Fontenille; Bart G. J. Knols; Abdel Hameed Nugud; Mark Q. Benedict
The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT.
Insect Molecular Biology | 1997
R. J. Brown; Colin A. Malcolm; P. L. Mason; Richard A. Nichols
Nine strains of Oryzaephilus surinamensis have been kept in laboratory culture for periods ranging from 5 to 30 years (30–180 generations). Two RAPD primers provided sufficient information to separate the strains reliably and unambiguously. The strains are maintained at a population size of 200 breeding adults. The marked divergence between strains is consistent with the small population size, which for the older strains, according to population genetics theory, implies that roughly half the original genetic variation should now be lost from within strains. However, there is no indication that the older strains have less inter‐strain variation. The results demonstrate RAPD loci can reliably detect population subdivision, which in field populations of pest species is of fundamental importance in understanding the population genetics of insecticide resistance.