Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin Brown is active.

Publication


Featured researches published by Colin Brown.


Nature | 2012

Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser

S. M. Vinko; O. Ciricosta; B. I. Cho; K. Engelhorn; H.-K. Chung; Colin Brown; T. Burian; J. Chalupský; Roger Falcone; Catherine Graves; V. Hajkova; Andrew Higginbotham; L. Juha; J. Krzywinski; Hae Ja Lee; Marc Messerschmidt; C. D. Murphy; Y. Ping; Andreas Scherz; W. F. Schlotter; S. Toleikis; J. J. Turner; L. Vysin; T. Wang; B. Wu; U. Zastrau; Diling Zhu; R. W. Lee; P. A. Heimann; B. Nagler

Matter with a high energy density (>105 joules per cm3) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>1017 watts per cm2, previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 106 kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray–matter interactions, and illustrate the importance of electron–ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.


Scientific Reports | 2012

Observation of inhibited electron-ion coupling in strongly heated graphite

T. G. White; Jan Vorberger; Colin Brown; B. J. B. Crowley; P. Davis; S. H. Glenzer; J. W. O. Harris; D. C. Hochhaus; S. Le Pape; T. Ma; C. D. Murphy; P. Neumayer; L. K. Pattison; S. Richardson; Dirk O. Gericke; G. Gregori

Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.


Nature Communications | 2015

Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma

S. M. Vinko; O. Ciricosta; T. R. Preston; D. S. Rackstraw; Colin Brown; T. Burian; J. Chalupský; B. I. Cho; H.-K. Chung; K. Engelhorn; Roger Falcone; R. Fiokovinini; V. Hajkova; P. A. Heimann; L. Juha; H. J. Lee; R. W. Lee; M. Messerschmidt; B. Nagler; W. F. Schlotter; J. J. Turner; L. Vysin; U. Zastrau; J. S. Wark

The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures ~30 eV to be several times higher than that predicted by standard semiempirical models.


Plasma Physics and Controlled Fusion | 2015

Comprehensive description of the Orion laser facility

Nicholas Hopps; Kevin A. Oades; Jim Andrew; Colin Brown; Graham Cooper; C. Danson; Simon Daykin; Stuart Duffield; Ray D. Edwards; David Egan; Stephen Elsmere; S. Gales; Mark Girling; E. T. Gumbrell; Ewan Harvey; David Hillier; D.J. Hoarty; C. J. Horsfield; Steven James; Alex Leatherland; Stephen Masoero; Anthony L. Meadowcroft; Michael R. Norman; Stefan Parker; Stephen Rothman; Michael Rubery; Paul Treadwell; David Winter; Thomas H. Bett

The Orion laser facility at the atomic weapons establishment (AWE) in the UK has been operational since April 2013, fielding experiments that require both its long and short pulse capability. This paper provides a full description of the facility in terms of laser performance, target systems and diagnostics currently available. Inevitably, this is a snapshot of current capability—the available diagnostics and the laser capability are evolving continuously. The laser systems consist of ten beams, optimised around 1 ns pulse duration, which each provide a nominal 500 J at a wavelength of 351 nm. There are also two short pulse beams, which each provide 500 J in 0.5 ps at 1054 nm. There are options for frequency doubling one short pulse beam to enhance the pulse temporal contrast. More recently, further contrast enhancement, based on optical parametric amplification (OPA) in the front end with a pump pulse duration of a few ps, has been installed. An extensive suite of diagnostics are available for users, probing the optical emission, x-rays and particles produced in laser-target interactions. Optical probe diagnostics are also available. A description of the diagnostics is provided.


Plasma Physics and Controlled Fusion | 2009

Proton acceleration experiments and warm dense matter research using high power lasers

Markus Roth; I. Alber; V. Bagnoud; Colin Brown; R. J. Clarke; H. Daido; Juan C. Fernandez; K. A. Flippo; S. A. Gaillard; C. Gauthier; Matthias Geissel; S. H. Glenzer; G. Gregori; M. M. Günther; K. Harres; R. Heathcote; A. L. Kritcher; N. L. Kugland; S. LePape; Bin Li; M. Makita; J. Mithen; C. Niemann; F. Nürnberg; Dustin Offermann; A. Otten; A. Pelka; David Riley; G. Schaumann; M. Schollmeier

The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.


Physics of Plasmas | 2016

Lineshape measurements of He-β spectra on the ORION laser facility

P. Beiersdorfer; G. V. Brown; R. Shepherd; P. Allan; Colin Brown; M. P. Hill; D.J. Hoarty; L. M. R. Hobbs; Steven James; H.-K. Chung; E. Hill

We have utilized a newly developed high-resolution X-ray spectrometer to measure the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility in the United Kingdom. We present measurements of the He-β spectra of chlorine and chromium from targets irradiated by either a long-pulse or a short-pulse laser beam. The experimental conditions provide a spread in plasma density ranging from about 1019 to about 1024 cm−3. We present spectral calculations that show that the relative intensities of the Li-like satellite lines can be used to infer the density in the lower range, especially if the lithiumlike satellite lines are well resolved. In addition, we use the Stark-broadened width of the He-β line to infer densities above about 1022 cm−3. In the case of a short-pulse irradiated chromium foil, we find that the He-like chromium is produced at a density of almost 8 g/cm3, i.e., solid density. In addition, we can infer the electron temperature from the observation of dielectronic...


Physics of Plasmas | 2018

Development and modeling of a polar-direct-drive exploding pusher platform at the National Ignition Facility

C. Leland Ellison; Heather D. Whitley; Colin Brown; Sean R. Copeland; Warren Garbett; Hai P. Le; M. B. Schneider; Zachary B. Walters; H. Chen; John I. Castor; R. Stephen Craxton; Maria Gatu Johnson; E. M. Garcia; Frank Graziani; G. Elijah Kemp; Christine M. Krauland; P.W. McKenty; B. Lahmann; J. Pino; Michael Rubery; Howard A. Scott; R. Shepherd; Hong Sio

High-intensity laser facilities, such as the National Ignition Facility (NIF), enable the experimental investigation of plasmas under extreme, high-energy-density conditions. Motivated by validating models for collisional heat-transfer processes in high-energy-density plasmas, we have developed an exploding pusher platform for use at the NIF in the polar-direct-drive configuration. The baseline design employs a 3 mm-diameter capsule, an 18 μm-thick CH ablator, and Ar-doped D2 gas to achieve several keV electron-ion temperature separations with relatively low convergence ratios. In an initial series of shots at the NIF—N160920–003, -005, and N160921–001—the ratio of the laser intensity at different polar angles was varied to optimize the symmetry of the implosion. Here we summarize experimental results from the shot series and present pre- and post-shot analysis. Although the polar-direct-drive configuration is inherently asymmetric, we successfully tuned a post-shot 1D model to a set of key implosion performance metrics. The post-shot model has proven effective for extrapolating capsule performance to higher incident laser drive. Overall, the simplicity of the platform and the efficacy of the post-shot 1D model make the polar-direct-drive exploding pusher platform attractive for a variety of applications beyond the originally targeted study of collisional processes in high-energy-density plasmas.High-intensity laser facilities, such as the National Ignition Facility (NIF), enable the experimental investigation of plasmas under extreme, high-energy-density conditions. Motivated by validating models for collisional heat-transfer processes in high-energy-density plasmas, we have developed an exploding pusher platform for use at the NIF in the polar-direct-drive configuration. The baseline design employs a 3 mm-diameter capsule, an 18 μm-thick CH ablator, and Ar-doped D2 gas to achieve several keV electron-ion temperature separations with relatively low convergence ratios. In an initial series of shots at the NIF—N160920–003, -005, and N160921–001—the ratio of the laser intensity at different polar angles was varied to optimize the symmetry of the implosion. Here we summarize experimental results from the shot series and present pre- and post-shot analysis. Although the polar-direct-drive configuration is inherently asymmetric, we successfully tuned a post-shot 1D model to a set of key implosion perf...


ATOMIC PROCESSES IN PLASMAS APIP 2016: Proceedings of the 18th and 19th International Conference on Atomic Processes in Plasmas | 2017

Measurements of plasma spectra from hot dense elements and mixtures at conditions relevant to the solar radiative zone

D. J. Hoarty; E. Hill; P. Beiersdorfer; P. Allan; Colin Brown; M.P. Hill; L.M R. Hobbs; Steven James; J. Morton; N. Sircombe; L. Upcraft; J.W.O. Harris; R. Shepherd; E. Marley; E. Magee; J. Emig; J. Nilsen; S.J. Rose

X-ray emission spectroscopy has been used to study hot dense plasmas produced using high power laser irradiation of dot samples buried in low Z foils of plastic or diamond. By combining a high contrast short pulse (picosecond timescale) laser beam operating in second harmonic with long pulse (nanosecond timescale) laser beams in third harmonic, and with pulse shaping of the long pulse beams, a range of plasma temperatures from 400eV up to 2.5keV and electron densities from 5e22 up to 1e24/cc have been accessed. Examples are given of measurements of dense plasma effects such as ionization potential depression and line-broadening from the K-shell emission spectra of a range of low Z elements and mixtures and compared to model prediction. Detailed spectra from measurements of the L-shell emission from mid-Z elements are also presented for an example spectrum of germanium. These data are at conditions found in stellar interiors and in particular in the radiative zone of the sun. The plasma conditions are infe...


Journal of Physics: Conference Series | 2016

The first data from the Orion laser: measurements of the spectrum of hot dense aluminium

D.J. Hoarty; Peter Allan; Steven James; Colin Brown; Lauren Hobbs; Matthew Hill; J.W.O. Harris; John J. L. Morton; M.G. Brookes; R. Shepherd; James Dunn; H. Chen; E. Von Marley; P. Beiersdorfer; H.-K. Chung; R.W. Lee; G. Brown; Jim Emig

The newly commissioned Orion laser system has been used to study dense plasmas created by a combination of short pulse laser heating and compression by laser driven shocks. Thus the plasma density was systematically varied between 1 and 10g/cc by using aluminium samples buried in plastic foils or diamond sheets. The aluminium was heated to electron temperatures between 500eV and 700eV allowing the plasma conditions to be diagnosed by K- shell emission spectroscopy. The K-shell spectra show the effect of the ionization potential depression as a function of density via the delocalization of n=3 levels and disappearance of n=3 transitions in He-like and H-like aluminium. The data are compared to simulated spectra, which account for the change in the ionization potential by the commonly used Stewart and Pyatt prescription; a simple ion sphere model and an alternative due to Ecker and Kroll suggested by recent X-ray free-electron laser experiments. The experimental data are in reasonable agreement with the model of Stewart and Pyatt, but are in better agreement with a simple ion sphere model. The data indicate that the Ecker and Kroll model overestimates substantially the ionization potential depression in this regime.


Physical Review Letters | 2012

Direct Measurements of the Ionization Potential Depression in a Dense Plasma

O. Ciricosta; S. M. Vinko; H.-K. Chung; B. I. Cho; Colin Brown; T. Burian; J. Chalupský; K. Engelhorn; Roger Falcone; Catherine Graves; V. Hajkova; Andrew Higginbotham; L. Juha; J. Krzywinski; H. J. Lee; M. Messerschmidt; C. D. Murphy; Y. Ping; D. S. Rackstraw; Andreas Scherz; W. F. Schlotter; S. Toleikis; J. J. Turner; L. Vysin; Tianhan Wang; Benny Wu; U. Zastrau; Diling Zhu; R. W. Lee; P. A. Heimann

Collaboration


Dive into the Colin Brown's collaboration.

Top Co-Authors

Avatar

Steven James

Atomic Weapons Establishment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Shepherd

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H.-K. Chung

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

H. Chen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Beiersdorfer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.W. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

B. Nagler

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. Engelhorn

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge