Colin D. O'Dowd
National University of Ireland, Galway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Colin D. O'Dowd.
Science | 2008
Daniel Rosenfeld; Ulrike Lohmann; Graciela B. Raga; Colin D. O'Dowd; Markku Kulmala; S. Fuzzi; Anni Reissell; Meinrat O. Andreae
Aerosols serve as cloud condensation nuclei (CCN) and thus have a substantial effect on cloud properties and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease and increase rainfall as a result of their radiative and CCN activities. At one extreme, pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds. On the other hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can form at all given the reduced surface heating resulting from the aerosol haze layer. We propose a conceptual model that explains this apparent dichotomy.
Nature | 2004
Colin D. O'Dowd; Maria Cristina Facchini; F. Cavalli; Darius Ceburnis; Mihaela Mircea; Stefano Decesari; S. Fuzzi; Young Jun Yoon; Jean-Philippe Putaud
Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earths albedo and climate. So far, much of the focus on marine aerosol has centred on the production of aerosol from sea-salt and non-sea-salt sulphates. Recent field experiments, however, have shown that known aerosol production processes for inorganic species cannot account for the entire aerosol mass that occurs in submicrometre sizes. Several experimental studies have pointed to the presence of significant concentrations of organic matter in marine aerosol. There is some information available about the composition of organic matter, but the contribution of organic matter to marine aerosol, as a function of aerosol size, as well as its characterization as hydrophilic or hydrophobic, has been lacking. Here we measure the physical and chemical characteristics of submicrometre marine aerosol over the North Atlantic Ocean during plankton blooms progressing from spring through to autumn. We find that during bloom periods, the organic fraction dominates and contributes 63% to the submicrometre aerosol mass (about 45% is water-insoluble and about 18% water-soluble). In winter, when biological activity is at its lowest, the organic fraction decreases to 15%. Our model simulations indicate that organic matter can enhance the cloud droplet concentration by 15% to more than 100% and is therefore an important component of the aerosol–cloud–climate feedback system involving marine biota.
Nature | 2002
Colin D. O'Dowd; Jose L. Jimenez; Roya Bahreini; John H. Seinfeld; Kaarle Hämeri; Liisa Pirjola; Markku Kulmala; S. Gerard Jennings; Thorsten Hoffmann
The formation of marine aerosols and cloud condensation nuclei—from which marine clouds originate—depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earths radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid—derived from the oxidation of dimethyl sulphide—is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.
Atmospheric Environment | 1997
Colin D. O'Dowd; M. H. Smith; Ian E. Consterdine; Jason A. Lowe
A short review of the marine aerosol size distribution and the contribution of sea-salt to this distribution is presented. The potential role of sea salt in the marine boundary layer sulphur cycle is highlighted.
Tellus B | 2001
Markku Kulmala; M. Dal Maso; J. M. Mäkelä; Liisa Pirjola; M. Väkevä; Pasi Aalto; P. Miikkulainen; Kaarle Hämeri; Colin D. O'Dowd
Taking advantage of only the measured aerosol particles spectral evolution as a function of time, a new analytical tool is developed to derive formation and growth properties of nucleation mode aerosols. This method, when used with hygroscopic growth-factors, can also estimate basic composition properties of these recently-formed particles. From size spectra the diameter growth-rate can be obtained, and aerosol condensation and coagulation sinks can be calculated. Using this growth-rate and condensation sink, the concentration of condensable vapours and their source rate can be estimated. Then, combining the coagulation sink together with measured number concentrations and apparent source rates of 3 nm particles, 1 nm particle nucleation rates and concentration can be estimated. To estimate nucleation rates and vapour concentration source rates producing new particle bursts over the Boreal forest regions, three cases from the BIOFOR project were examined using this analytical tool. In this environment, the nucleation mode growth-rate was observed to be 2–3 nm hour−1, which required a condensable vapour concentration of 2.5–4×107 cm−3 and a source rate of approximately 7.5–11×104 cm−3 s−1 to be sustained. The formation rate of 3 nm particles was =1 particle cm−3 s−1 in all three cases. The estimated formation rate of 1 nm particles was 10–100 particles cm−3 s−1, while their concentration was estimated to be between 10,000 and 100,000 particles cm−3. Using hygroscopicity data and mass flux expressions, the mass flux of insoluble vapour is estimated to be of the same order of magnitude as that of soluble vapour, with a soluble to insoluble vapour flux ratio ranging from 0.7 to 1.4 during these nucleation events.
Philosophical Transactions of the Royal Society A | 2007
Colin D. O'Dowd; Gerrit de Leeuw
The current knowledge in primary and secondary marine aerosol formation is reviewed. For primary marine aerosol source functions, recent source functions have demonstrated a significant flux of submicrometre particles down to radii of 20 nm. Moreover, the source functions derived from different techniques up to 10 μm have come within a factor of two of each other. For secondary marine aerosol formation, recent advances have identified iodine oxides and isoprene oxidation products, in addition to sulphuric acid, as contributing to formation and growth, although the exact roles remains to be determined. While a multistep process seems to be required, isoprene oxidation products are more likely to participate in growth and sulphuric acid is more likely to participate in nucleation. Iodine oxides are likely to participate in both nucleation and growth.
Nature | 2002
Colin D. O'Dowd; Pasi Aalto; Kaarle Hmeri; Markku Kulmala; Thorsten Hoffmann
Aerosol particles produced over forested areas may affect climate by acting as nuclei for cloud condensation, but their composition (and hence the chemical species that drive their production) remains an open question. Here we show, to our knowledge for the first time, that these newly formed particles (3–5 nm in diameter) are composed primarily of organic species, such as cis-pinonic acid and pinic acid, produced by oxidation of terpenes in organic vapours released from the canopy.
Tellus B | 2001
Markku Kulmala; Kaarle Hämeri; Pasi Aalto; J. M. Mäkelä; Liisa Pirjola; E. Douglas Nilsson; Gintautas Buzorius; Üllar Rannik; M. Dal Maso; Winfried Seidl; T. Hoffman; Robert Janson; H.-C. Hansson; Y. Viisanen; Ari Laaksonen; Colin D. O'Dowd
Aerosol formation and subsequent particle growth in ambient air have been frequently observed at a boreal forest site (SMEAR II station) in Southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on: (a) determination of formation mechanisms of aerosol particles in the boreal forest site; (b) verification of emissions of secondary organic aerosols from the boreal forest site; and (c) quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. The approach of the project was to combine the continuous measurements with a number of intensive field studies. These field studies were organised in three periods, two of which were during the most intense particle production season and one during a non-event season. Although the exact formation route for 3 nm particles remains unclear, the results can be summarised as follows: Nucleation was always connected to Arctic or Polar air advecting over the site, giving conditions for a stable nocturnal boundary layer followed by a rapid formation and growth of a turbulent convective mixed layer closely followed by formation of new particles. The nucleation seems to occur in the mixed layer or entrainment zone. However two more prerequisites seem to be necessary. A certain threshold of high enough sulphuric acid and ammonia concentrations is probably needed as the number of newly formed particles was correlated with the product of the sulphuric acid production and the ammonia concentrations. No such correlation was found with the oxidation products of terpenes. The condensation sink, i.e., effective particle area, is probably of importance as no nucleation was observed at high values of the condensation sink. From measurement of the hygroscopic properties of the nucleation particles it was found that inorganic compounds and hygroscopic organic compounds contributed both to the particle growth during daytime while at night time organic compounds dominated. Emissions rates for several gaseous compounds was determined. Using four independent ways to estimate the amount of the condensable vapour needed for observed growth of aerosol particles we get an estimate of 2–10×107 vapour molecules cm−3. The estimations for source rate give 7.5–11×104 cm−3 s−1. These results lead to the following conclusions: The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia). After nucleation, growth into observable sizes (~3 nm) is required before new particles appear. The major part of this growth is probably due to condensation of organic vapours. However, there is lack of direct proof of this phenomenon because the composition of 1–5 nm size particles is extremely difficult to determine using the present state-of-art instrumentation.
Tellus B | 2001
Pasi Aalto; Kaarle Hämeri; E. D. O. Becker; Rodney J. Weber; J. Salm; J. M. Mäkelä; Claudia Hoell; Colin D. O'Dowd; Hans Karlsson; Hans-Christen Hansson; M. Väkevä; Ismo K. Koponen; Gintautas Buzorius; Markku Kulmala
Particle concentrations and size distributions have been measured from different heights inside and above a boreal forest during three BIOFOR campaigns (14 April–22 May 1998, 27 July–21 August 1998 and 20 March–24 April 1999) in Hyytiälä, Finland. Typically, the shape of the background distribution inside the forest exhibited 2 dominant modes: a fine or Aitken mode with a geometric number mean diameter of 44 nm and a mean concentration of 1160 cm−3 and an accumulation mode with mean diameter of 154 nm and a mean concentration of 830 cm−3. A coarse mode was also present, extending up to sizes of 20 μm having a number concentration of 1.2 cm−3, volume mean diameter of 2.0 μm and a geometric standard deviation of 1.9. Aerosol humidity was lower than 50% during the measurements. Particle production was observed on many days, typically occurring in the late morning. Under these periods of new particle production, a nucleation mode was observed to form at diameter of the order of 3 nm and, on most occasions, this mode was observed to grow into Aitken mode sizes over the course of a day. Total concentrations ranged from 410–45 000 cm−3, the highest concentrations occurring on particle production days. A clear gradient was observed between particle concentrations encountered below the forest canopy and those above, with significantly lower concentrations occurring within the canopy. Above the canopy, a slight gradient was observed between 18 m and 67 m, with at maximum 5% higher concentration observed at 67 m during the strongest concentration increases.
Reviews of Geophysics | 2011
Gerrit de Leeuw; Edgar L Andreas; Magdalena D. Anguelova; Christopher W. Fairall; Ernie R. Lewis; Colin D. O'Dowd; Michael Schulz; Stephen E. Schwartz
Knowledge of the size- and composition-dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r 80 (equilibrium radius at 80% relative humidity) less than 1 m and as small as 0.01 m. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r80 < 0.25 m and, in locations with high biological activity, can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.