Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin Delaney is active.

Publication


Featured researches published by Colin Delaney.


American Journal of Human Genetics | 2008

Neuropathy Target Esterase Gene Mutations Cause Motor Neuron Disease

Shirley Rainier; Melanie Bui; Erin Mark; Donald Thomas; Debra A. Tokarz; Lei Ming; Colin Delaney; Rudy J. Richardson; James W. Albers; Nori Matsunami; Jeff Stevens; Hilary Coon; M. Leppert; John K. Fink

The possibility that organophosphorus (OP) compounds contribute to motor neuron disease (MND) is supported by association of paraoxonase 1 polymorphisms with amyotrophic lateral sclerosis (ALS) and the occurrence of MND in OP compound-induced delayed neuropathy (OPIDN), in which neuropathy target esterase (NTE) is inhibited by organophosphorylation. We evaluated a consanguineous kindred and a genetically unrelated nonconsanguineous kindred in which affected subjects exhibited progressive spastic paraplegia and distal muscle wasting. Affected subjects resembled those with OPIDN and those with Troyer Syndrome due to SPG20/spartin gene mutation (excluded by genetic linkage and SPG20/spartin sequence analysis). Genome-wide analysis suggested linkage to a 22 cM homozygous locus (D19S565 to D19S884, maximum multipoint LOD score 3.28) on chromosome 19p13 to which NTE had been mapped (GenBank AJ004832). NTE was a candidate because of its role in OPIDN and the similarity of our patients to those with OPIDN. Affected subjects in the consanguineous kindred were homozygous for disease-specific NTE mutation c.3034A-->G that disrupted an interspecies conserved residue (M1012V) in NTEs catalytic domain. Affected subjects in the nonconsanguineous family were compound heterozygotes: one allele had c.2669G-->A mutation, which disrupts an interspecies conserved residue in NTEs catalytic domain (R890H), and the other allele had an insertion (c.2946_2947insCAGC) causing frameshift and protein truncation (p.S982fs1019). Disease-specific, nonconserved NTE mutations in unrelated MND patients indicates NTEs importance in maintaining axonal integrity, raises the possibility that NTE pathway disturbances contribute to other MNDs including ALS, and supports the role of NTE abnormalities in axonopathy produced by neuropathic OP compounds.


Journal of Immunology | 2011

Aging Is Associated with an Increase in T Cells and Inflammatory Macrophages in Visceral Adipose Tissue

Jianhua Liu; Lynn Geletka; Colin Delaney; Jennifer B. DelProposto; Anjali Desai; Kelsie E. Oatmen; Gabriel Martinez-Santibanez; Annabelle Julius; Sanjay K. Garg; Raymond Yung

Age-related adiposity has been linked to chronic inflammatory diseases in late life. To date, the studies on adipose tissue leukocytes and aging have not taken into account the heterogeneity of adipose tissue macrophages (ATMs), nor have they examined how age impacts other leukocytes such as T cells in fat. Therefore, we have performed a detailed examination of ATM subtypes in young and old mice using state of the art techniques. Our results demonstrate qualitative changes in ATMs with aging that generate a decrease in resident type 2 (M2) ATMs. The profile of ATMs in old fat shifts toward a proinflammatory environment with increased numbers of CD206−CD11c− (double-negative) ATMs. The mechanism of this aging-induced shift in the phenotypic profile of ATMs was found to be related to a decrease in peroxisome proliferator-activated receptor-γ expression in ATMs and alterations in chemokine/chemokine receptor expression profiles. Furthermore, we have revealed a profound and unexpected expansion of adipose tissue T cells in visceral fat with aging that includes a significant induction of regulatory T cells in fat. Our findings demonstrate a unique inflammatory cell signature in the physiologic context of aging adipose tissue that differs from those induced in setting of diet-induced obesity.


PLOS ONE | 2012

Identification of Epigenetically Altered Genes in Sporadic Amyotrophic Lateral Sclerosis

Claudia Figueroa-Romero; Junguk Hur; Diane E. Bender; Colin Delaney; Michael D. Cataldo; Andrea L. Smith; Raymond Yung; Douglas M. Ruden; Brian C. Callaghan; Eva L. Feldman

Amyotrophic lateral sclerosis (ALS) is a terminal disease involving the progressive degeneration of motor neurons within the motor cortex, brainstem and spinal cord. Most cases are sporadic (sALS) with unknown causes suggesting that the etiology of sALS may not be limited to the genotype of patients, but may be influenced by exposure to environmental factors. Alterations in epigenetic modifications are likely to play a role in disease onset and progression in ALS, as aberrant epigenetic patterns may be acquired throughout life. The aim of this study was to identify epigenetic marks associated with sALS. We hypothesize that epigenetic modifications may alter the expression of pathogenesis-related genes leading to the onset and progression of sALS. Using ELISA assays, we observed alterations in global methylation (5 mC) and hydroxymethylation (5 HmC) in postmortem sALS spinal cord but not in whole blood. Loci-specific differentially methylated and expressed genes in sALS spinal cord were identified by genome-wide 5mC and expression profiling using high-throughput microarrays. Concordant direction, hyper- or hypo-5mC with parallel changes in gene expression (under- or over-expression), was observed in 112 genes highly associated with biological functions related to immune and inflammation response. Furthermore, literature-based analysis identified potential associations among the epigenes. Integration of methylomics and transcriptomics data successfully revealed methylation changes in sALS spinal cord. This study represents an initial identification of epigenetic regulatory mechanisms in sALS which may improve our understanding of sALS pathogenesis for the identification of biomarkers and new therapeutic targets.


Journal of Autoimmunity | 2012

Environmental Exposure, Estrogen and Two X Chromosomes are Required for Disease Development in an Epigenetic Model of Lupus

Faith M. Strickland; Anura Hewagama; Qianjian Lu; Ailing Wu; Robert Hinderer; Ryan Webb; Kent J. Johnson; Amr H. Sawalha; Colin Delaney; Raymond Yung; Bruce C. Richardson

Systemic lupus erythematosus (SLE) is an autoimmune disease primarily afflicting women. The reason for the gender bias is unclear, but genetic susceptibility, estrogen and environmental agents appear to play significant roles in SLE pathogenesis. Environmental agents can contribute to lupus susceptibility through epigenetic mechanisms. We used (C57BL/6xSJL)F1 mice transgenic for a dominant-negative MEK (dnMEK) that was previously shown to be inducibly and selectively expressed in T cells. In this model, induction of the dnMEK by doxycycline treatment suppresses T cell ERK signaling, decreasing DNA-methyltransferase expression and resulting in DNA demethylation, overexpression of immune genes Itgal (CD11a) and Tnfsf7 (CD70), and anti-dsDNA antibody. To examine the role of gender and estrogen in this model, male and female transgenic mice were neutered and implanted with time-release pellets delivering placebo or estrogen. Doxycycline induced IgG anti-dsDNA antibodies in intact and neutered, placebo-treated control female but not male transgenic mice. Glomerular IgG deposits were also found in the kidneys of female but not male transgenic mice, and not in the absence of doxycycline. Estrogen enhanced anti-dsDNA IgG antibodies only in transgenic, ERK-impaired female mice. Decreased ERK activation also resulted in overexpression and demethylation of the X-linked methylation-sensitive gene CD40lg in female but not male mice, consistent with demethylation of the second X chromosome in the females. The results show that both estrogen and female gender contribute to the female predisposition in lupus susceptibility through hormonal and epigenetic X-chromosome effects and through suppression of ERK signaling by environmental agents.


Arthritis & Rheumatism | 2013

Diet Influences Expression of Autoimmune-Associated Genes and Disease Severity by Epigenetic Mechanisms in a Transgenic Mouse Model of Lupus

Faith M. Strickland; Anura Hewagama; Ailing Wu; Amr H. Sawalha; Colin Delaney; Mark F. Hoeltzel; Raymond Yung; Kent J. Johnson; Barbara Mickelson; Bruce C. Richardson

OBJECTIVE Lupus flares occur when genetically predisposed individuals encounter appropriate environmental agents. Current evidence indicates that the environment contributes by inhibiting T cell DNA methylation, causing overexpression of normally silenced genes. DNA methylation depends on both dietary transmethylation micronutrients and ERK-regulated DNA methyltransferase 1 (DNMT-1) levels. We used transgenic mice to study the effect of interactions between diet, DNMT-1 levels, and genetic predisposition on the development and severity of lupus. METHODS A doxycycline-inducible ERK defect was bred into lupus-resistant (C57BL/6) and lupus-susceptible (C57BL/6 × SJL) mouse strains. Doxycycline-treated mice were fed a standard commercial diet for 18 weeks and then switched to a transmethylation micronutrient-supplemented (MS) or -restricted (MR) diet. Disease severity was assessed by examining anti-double-stranded DNA (anti-dsDNA) antibody levels, the presence of proteinuria and hematuria, and by histopathologic analysis of kidney tissues. Pyrosequencing was used to determine micronutrient effects on DNA methylation. RESULTS Doxycycline induced modest levels of anti-dsDNA antibodies in C57BL/6 mice and higher levels in C57BL/6 × SJL mice. Doxycycline-treated C57BL/6 × SJL mice developed hematuria and glomerulonephritis on the MR and standard diets but not the MS diet. In contrast, C57BL/6 mice developed kidney disease only on the MR diet. Decreasing ERK signaling and methyl donors also caused demethylation and overexpression of the CD40lg gene in female mice, consistent with demethylation of the second X chromosome. Both the dietary methyl donor content and the duration of treatment influenced methylation and expression of the CD40lg gene. CONCLUSION Dietary micronutrients that affect DNA methylation can exacerbate or ameliorate disease in this transgenic murine lupus model, and contribute to lupus susceptibility and severity through genetic-epigenetic interactions.


Aging Cell | 2014

Aging is associated with increased regulatory T-cell function

Sanjay K. Garg; Colin Delaney; Tomomi Toubai; Amiya K. Ghosh; Pavan Reddy; Ruma Banerjee; Raymond Yung

Regulatory T‐cell (Treg, CD4+CD25+) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T‐cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3–4 months) and aged (18–20 months) C57BL/6 mice. DNA from CD4+ T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T‐cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling–mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL‐10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T‐cell activity. Taken together, these results reveal a potential mechanism of higher Treg‐mediated activity that may contribute to increased immune suppression with age.


PLOS ONE | 2013

Maternal Diet Supplemented with Methyl-Donors Protects against Atherosclerosis in F1 ApoE−/− Mice

Colin Delaney; Sanjay K. Garg; Chris Fernandes; Mark F. Hoeltzel; Robert H. Allen; Sally P. Stabler; Raymond Yung

Atherosclerosis is an inflammatory condition of the arterial wall mediated by cells of both innate and adaptive immunity. T lymphocytes play an important role in orchestrating the pathogenic immune response involved in the acceleration of atherosclerosis. Previously, we have shown that a prenatal methyl-donor supplementation diet (MS), when fed to dams during pregnancy and lactation, decreased the T cell-mediated pro-inflammatory cytokine and chemokine response in F1 mice. In the current study, we report feeding Apolipoprotein E (ApoE−/−) deficient dams with the MS diet during pregnancy reduces atherosclerotic plaques in F1 mice that were fed high fat diet (HFD) after weaning. F1 mice from dams on the MS diet exhibited increased global T cell DNA methylation. T-cell chemokines and their receptors (in particular CCR2, CCR5, and CXCR3) play important roles in the inflammatory cell recruitment to vascular lesions. MS diet significantly reduced Ccr2 mRNA and protein expression in CD3+ T cells but not in CD11b+ monocytes in MS F1 mice relative to controls. F1 litter size, HFD consumption, body weight, and body fat were similar between control and MS diet groups. Moreover, serum thiol metabolite levels were similar between the two groups. However, MS diet is associated with significantly higher serum HDL and lower LDL+VLDL levels in comparison to F1 mice from dams on the control diet. Inflammatory cytokines (IL-17, TNF-α, IL-6) were also lower in MS F1 mice serum and conditioned media from T-cell culture. Altogether, these data suggest that the MS diet ameliorates development of atherosclerosis by inhibiting the T-cell Ccr2 expression, reducing inflammatory cytokines production and increasing serum HDL:LDL ratio.


Methods of Molecular Biology | 2015

Analysis of DNA Methylation by Pyrosequencing

Colin Delaney; Sanjay K. Garg; Raymond Yung

Pyrosequencing is a technique that uses a sequencing-by-synthesis system which is designed to quantify single-nucleotide polymorphisms (SNPs). Artificial C/T SNP creation via bisulfite modification permits measurement of DNA methylation locally and globally in real time. Alteration in DNA methylation has been implicated in aging, as well as aging-related conditions such as cancer, as well as cardiovascular, neurodegenerative, and autoimmune diseases. Considering its ubiquitous presence in divergent clinical pathologies, quantitative analysis of DNA CpG methylation both globally and at individual genes helps to elucidate the regulation of genes involved in pathophysiological conditions. The ability to detect and quantify the methylation pattern of DNA has the potential to serve as an early detection marker and potential drug target for several diseases. Here, we provide a detailed technical protocol for pyrosequencing supplemented by critical information about assay design and nuances of the system that provides a strong foundation for beginners in the field.


Genetics | 2013

Unexpected Role for Dosage Compensation in the Control of Dauer Arrest, Insulin-Like Signaling, and FoxO Transcription Factor Activity in Caenorhabditis elegans

Kathleen J. Dumas; Colin Delaney; Stephane Flibotte; Donald G. Moerman; Györgyi Csankovszki; Patrick J. Hu

During embryogenesis, an essential process known as dosage compensation is initiated to equalize gene expression from sex chromosomes. Although much is known about how dosage compensation is established, the consequences of modulating the stability of dosage compensation postembryonically are not known. Here we define a role for the Caenorhabditis elegans dosage compensation complex (DCC) in the regulation of DAF-2 insulin-like signaling. In a screen for dauer regulatory genes that control the activity of the FoxO transcription factor DAF-16, we isolated three mutant alleles of dpy-21, which encodes a conserved DCC component. Knockdown of multiple DCC components in hermaphrodite and male animals indicates that the dauer suppression phenotype of dpy-21 mutants is due to a defect in dosage compensation per se. In dpy-21 mutants, expression of several X-linked genes that promote dauer bypass is elevated, including four genes encoding components of the DAF-2 insulin-like pathway that antagonize DAF-16/FoxO activity. Accordingly, dpy-21 mutation reduced the expression of DAF-16/FoxO target genes by promoting the exclusion of DAF-16/FoxO from nuclei. Thus, dosage compensation enhances dauer arrest by repressing X-linked genes that promote reproductive development through the inhibition of DAF-16/FoxO nuclear translocation. This work is the first to establish a specific postembryonic function for dosage compensation in any organism. The influence of dosage compensation on dauer arrest, a larval developmental fate governed by the integration of multiple environmental inputs and signaling outputs, suggests that the dosage compensation machinery may respond to external cues by modulating signaling pathways through chromosome-wide regulation of gene expression.


Journal of Nutrition | 2012

Maternal Micronutrient Supplementation Suppresses T Cell Chemokine Receptor Expression and Function in F1 Mice

Colin Delaney; Mark F. Hoeltzel; Sanjay K. Garg; Roscoe L. Warner; Kent J. Johnson; Raymond Yung

Prenatal environmental exposures play a critical role in determining late-life chronic disease susceptibility. However, the mechanisms linking the in utero environment and disease development in the offspring are poorly understood. Recent investigations have confirmed a central pathogenic role of T cell chemokine receptors, particularly C-C chemokine receptor (CCR) 2 and CCR5, in chronic inflammatory conditions. This study was designed to determine the effect of a synthetic prenatal micronutrient supplementation (MS) diet rich in methionine pathway metabolites on the T cell chemokine system in F1 C57Bl/6 mice. Female mice were fed either an MS or control diet 3 wk prior to mating, during pregnancy, and lactation. At 4 wk of age, F1 mice were killed for experiments or were fed the standard NIH-31 diet and allowed to age. Food consumption, maternal weight gain, and litter size were similar in dams fed the control and MS diets. However, the F1 offspring of dams fed the MS diet were smaller in size (P < 0.001). T cells from the MS F1 offspring had global hypermethylation compared with control F1 offspring (P < 0.005), corresponding to lower T cell chemokine receptor expression [CCR2 (P < 0.001), CCR5 (P < 0.001), and C-x-C chemokine receptor 3 (P < 0.01)] and cytokine expression [TNFα (P < 0.05), IL-2 (P < 0.001), and IL-4 (P < 0.01)]. Reduced T cell chemokine receptor gene expression in MS F1 mice was associated with decreased chemotaxis in vitro to C-C chemokine ligand (CCL) 2 and C-X-C chemokine ligand 10 (P < 0.01) and in vivo to CCL2 (P < 0.01). Taken together, the results suggest that epigenetic alteration through prenatal diet manipulation reduces the response to proinflammatory signals in mice.

Collaboration


Dive into the Colin Delaney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ailing Wu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Amr H. Sawalha

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debra A. Tokarz

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge