Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin Hills is active.

Publication


Featured researches published by Colin Hills.


Waste Management | 2009

Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

Quanyuan Chen; Mark Tyrer; Colin Hills; X.M. Yang; Paula Carey

Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique.


Water Research | 2009

Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide

Quanyuan Chen; Zhou Luo; Colin Hills; Gang Xue; Mark Tyrer

Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L(-1)) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities.


Green Chemistry | 2004

Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2

M Fernandez Bertos; X Li; S.J.R. Simons; Colin Hills; Paula Carey

Accelerated carbonation has been used for the treatment of contaminated soils and hazardous wastes, giving reaction products that can cause rapid hardening and the production of granulated or monolithic materials. This technology provides a route to sustainable waste management and it generates a viable remedy to the problems of a decreasing number of landfill sites in the UK, global warming (due to greenhouse gas emissions) and the depletion of natural aggregate resources, such as sand and gravel. The application of accelerated carbonation (termed Accelerated Carbonation Technology or ACT) to sequester CO2 in fresh ashes from municipal solid waste (MSW) incinerator/combined heat and power plants is presented. The purpose of this paper is to evaluate the influence of fundamental parameters affecting the diffusivity and reactivity of CO2 (i.e. particle size, the reaction time and the water content) on the extent and quality of carbonation. In addition, the major physical and chemical changes in air pollution control (APC) residues and bottom ashes (BA) after carbonation are evaluated, as are the optimum reaction conditions, and the physical and chemical changes induced by accelerated carbonation are presented and discussed.


Journal of Hazardous Materials | 2011

Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites.

Gang Xue; Huanhuan Liu; Quanyuan Chen; Colin Hills; Mark Tyrer; Francis Innocent

A photocatalyst comprising nano-sized TiO(2) particles on granular activated carbon (GAC) was prepared by a sol-dipping-gel process. The TiO(2)/GAC composite was characterized by scanning electron microscopy (SEM), X-ray diffractiometry (XRD) and nitrogen sorptometry, and its photocatalytic activity was studied through the degradation of humic acid (HA) in a quartz glass reactor. The factors influencing photocatalysis were investigated and the GAC was found to be an ideal substrate for nano-sized TiO(2) immobilization. A 99.5% removal efficiency for HA from solution was achieved at an initial concentration of 15 mg/L in a period of 3h. It was found that degradation of HA on the TiO(2)/GAC composite was facilitated by the synergistic relationship between surface adsorption characteristics and photocatalytic potential. The fitting of experimental results with the Langmuir-Hinshelwood (L-H) model showed that the reaction rate constant and the adsorption constant values were 0.1124 mg/(L min) and 0.3402 L/mg. The latter is 1.7 times of the calculated value by fitting the adsorption equilibrium data into the Langmuir equation.


Waste Management | 2010

Accelerated carbonation treatment of industrial wastes

Peter Gunning; Colin Hills; Paula Carey

The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.


Environmental Technology | 2003

Solidification of stainless steel slag by accelerated carbonation

D.C. Johnson; C.L. Macleod; Paula Carey; Colin Hills

Abstract On exposure to carbon dioxide (CO2) at a pressure of 3 bars, compacts formed from pressed ground slag, and 12.5 weight percent water, were found to react with approximately 18% of their own weight of CO2. The reaction product formed was calcium carbonate causing the slag to self‐cement. Unconfined compressive strengths of 9MPa were recorded in carbonated compacts whereas strengths of <1 MPa were recorded in non‐carbonated slag compacts. As molten stainless steel slag containing dicalcium silicate (C2S) cools it can undergo several phase transitions. The final transformation from the p‐polymorph to γ‐C2S is accompanied by a volume change that causes the slag to self‐pulverise or ‘dust’. As a consequence of this the fine grained portion of the slag contains more of this phase whilst the coarser particles of the slag contain more of the calcium magnesium silicates that contribute the bulk of the waste. The fine fraction (<125μm) of the slag when ground is found to react to the same extent as the ground bulk slag and produces compacts with equivalent strength. A coarser fraction (4–8mm) when ground to a similar grading does not react as extensively and produces a weaker product. Additions of ordinary Portland cement (OPC) at 5 and 10 percent by weight did not alter the degree of reaction during carbonation of the bulk slag or ground fine fraction, however the strength of the 4–8mm fraction was increased by this change.


Waste Management | 2009

Production of lightweight aggregate from industrial waste and carbon dioxide

Peter Gunning; Colin Hills; Paula Carey

The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.


Journal of Hazardous Materials | 2010

Investigation of 4-year-old stabilised/solidified and accelerated carbonated contaminated soil.

Aurora Antemir; Colin Hills; Paula Carey; M. C. Magnié; Alessandra Polettini

The investigation of the pilot-scale application of two different stabilisation/solidification (S/S) techniques was carried out at a former fireworks and low explosives manufacturing site in SE England. Cores and granular samples were recovered from uncovered accelerated carbonated (ACT) and cement-treated soils (S/S) after 4 years to evaluate field-performance with time. Samples were prepared for microstructural examination and leaching testing. The results indicated that the cement-treated soil was progressively carbonated over time, whereas the mineralogy of the carbonated soil remained essentially unchanged. Distinct microstructures were developed in the two soils. Although Pb, Zn and Cu leached less from the carbonated soil, these metals were adequately immobilised by both treatments. Geochemical modeling of pH-dependent leaching data suggested that the retention of trace metals resulted from different immobilisation mechanisms operating in the two soils examined.


Journal of Hazardous Materials | 2010

Long-term performance of aged waste forms treated by stabilization/solidification

Aurora Antemir; Colin Hills; Paula Carey; Kevin H. Gardner; Edward R. Bates; Alison K. Crumbie

Current regulatory testing of stabilized/solidified (S/S) soils is based on short-term performance tests and is insufficient to determine their long-term stability or expected service life. In view of this, and the significant lack of data on long-term field performance in the literature, S/S material has been extracted from full-scale remedial operations and examined using a variety of analytical techniques to evaluate field performance. The results, including those from X-ray analytical techniques, optical and electron microscopy and leaching tests are presented and discussed. The microstructure of retrieved samples was found to be analogous to other cement-based materials, but varied according to the soil type, the contaminants present, the treatment applied and the field exposure conditions. Summary of the key microstructural features in the USA and UK is presented in this work. The work has shown that during 16 years of service the S/S wastes investigated performed satisfactorily.


Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material | 2007

Accelerated carbonation and leaching behavior of the slag from iron and steel making industry

Quanyuan Chen; D.C. Johnson; Lingyun Zhu; Menghong Yuan; Colin Hills

Abstract Ground granulated blast furnace slag (GGBFS) and steelmaking slag have been used as a raw material for cement production or as an aggregate to make concrete, which contribute aluminum, calcium, iron, and silicon oxides. The suitability of the slag for a particular application depends on its reactivity, cost, availability, and its influence on the properties of the resulting concrete. For the interest of durability studying of concrete in the presence of slag, the accelerated carbonation products and leaching behavior of the slag and Portland cement (PC) were studied. The experimental results confirmed that the slag was more resistant to carbonation compared to PC. The carbonation degree of GGBFS reduced by 17.74%; and the carbonation degrees of steelmaking slags reduced by 9.5%-11.94%. Carbonation neutralized the alkaline nature of the hydrated pastes and gave rise to the redox potential of the leachate slightly (30–77 mV). The carbonation also increased the release of most of the elements presented, except for calcium, to the aqueous environment. It is concluded that blend cements (PC plus slag) have economical advantages and better durability compared to PC.

Collaboration


Dive into the Colin Hills's collaboration.

Top Co-Authors

Avatar

Paula Carey

University of Greenwich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nimisha Tripathi

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Raj Shekhar Singh

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Alan Maries

University of Greenwich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Tyrer

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.J.R. Simons

University College London

View shared research outputs
Top Co-Authors

Avatar

D.C. Johnson

University of Greenwich

View shared research outputs
Researchain Logo
Decentralizing Knowledge