Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin I. Cercamondi is active.

Publication


Featured researches published by Colin I. Cercamondi.


The American Journal of Clinical Nutrition | 2010

Afebrile Plasmodium falciparum parasitemia decreases absorption of fortification iron but does not affect systemic iron utilization: a double stable-isotope study in young Beninese women

Colin I. Cercamondi; Ines Egli; Ella Ahouandjinou; Romain Dossa; Christophe Zeder; Lamidhi Salami; Harold Tjalsma; Erwin T. Wiegerinck; Toshihiko Tanno; Richard F. Hurrell; Joseph D. Hounhouigan; Michael B. Zimmermann

BACKGROUND Iron deficiency anemia (IDA) affects many young women in sub-Saharan Africa. Its etiology is multifactorial, but the major cause is low dietary iron bioavailability exacerbated by parasitic infections such as malaria. OBJECTIVE We investigated whether asymptomatic Plasmodium falciparum parasitemia in Beninese women would impair absorption of dietary iron or utilization of circulating iron. DESIGN Iron absorption and utilization from an iron-fortified sorghum-based meal were estimated by using oral and intravenous isotope labels in 23 afebrile women with a positive malaria smear (asexual P. falciparum parasitemia; > 500 parasites/μL blood). The women were studied while infected, treated, and then restudied 10 d after treatment. Iron status, hepcidin, and inflammation indexes were measured before and after treatment. RESULTS Treatment reduced low-grade inflammation, as reflected by decreases in serum ferritin, C-reactive protein, interleukin-6, interleukin-8, and interleukin-10 (P < 0.05); this was accompanied by a reduction in median serum hepcidin of ≈ 50%, from 2.7 to 1.4 nmol/L (P < 0.005). Treatment decreased serum erythropoietin and growth differentiation factor 15 (P < 0.05). Clearance of parasitemia increased geometric mean dietary iron absorption (from 10.2% to 17.6%; P = 0.008) but did not affect systemic iron utilization (85.0% compared with 83.1%; NS). CONCLUSIONS Dietary iron absorption is reduced by ≈ 40% in asymptomatic P. falciparum parasitemia, likely because of low-grade inflammation and its modulation of circulating hepcidin. Because asymptomatic parasitemia has a protracted course and is very common in malarial areas, this effect may contribute to IDA and blunt the efficacy of iron supplementation and fortification programs. This trial was registered at clinicaltrials.gov as NCT01108939.


Journal of Nutrition | 2013

Total Iron Absorption by Young Women from Iron-Biofortified Pearl Millet Composite Meals Is Double That from Regular Millet Meals but Less Than That from Post-Harvest Iron-Fortified Millet Meals

Colin I. Cercamondi; Ines Egli; Evariste Mitchikpe; Félicien Tossou; Christophe Zeder; Joseph D. Hounhouigan; Richard F. Hurrell

Iron biofortification of pearl millet (Pennisetum glaucum) is a promising approach to combat iron deficiency (ID) in the millet-consuming communities of developing countries. To evaluate the potential of iron-biofortified millet to provide additional bioavailable iron compared with regular millet and post-harvest iron-fortified millet, an iron absorption study was conducted in 20 Beninese women with marginal iron status. Composite test meals consisting of millet paste based on regular-iron, iron-biofortified, or post-harvest iron-fortified pearl millet flour accompanied by a leafy vegetable sauce or an okra sauce were fed as multiple meals for 5 d. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes. Fractional iron absorption from test meals based on regular-iron millet (7.5%) did not differ from iron-biofortified millet meals (7.5%; P = 1.0), resulting in a higher quantity of total iron absorbed from the meals based on iron-biofortified millet (1125 vs. 527 μg; P < 0.0001). Fractional iron absorption from post-harvest iron-fortified millet meals (10.4%) was higher than from regular-iron and iron-biofortified millet meals (P < 0.05 and P < 0.01, respectively), resulting in a higher quantity of total iron absorbed from the post-harvest iron-fortified millet meals (1500 μg; P < 0.0001 and P < 0.05, respectively). Results indicate that consumption of iron-biofortified millet would double the amount of iron absorbed and, although fractional absorption of iron from biofortification is less than that from fortification, iron-biofortified millet should be highly effective in combatting ID in millet-consuming populations.


The Lancet Haematology | 2017

Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials

Nicole U. Stoffel; Colin I. Cercamondi; Gary M. Brittenham; Christophe Zeder; Anneke Geurts-Moespot; Dorine W. Swinkels; Diego Moretti; Michael B. Zimmermann

BACKGROUND Current guidelines to treat iron deficiency recommend daily provision of ferrous iron divided through the day to increase absorption. However, daily dosing and split dosing might increase serum hepcidin and decrease iron absorption from subsequent doses. Our study aim was to compare iron absorption from oral iron supplements given on consecutive versus alternate days and given as single morning doses versus twice-daily split dosing. METHODS We did two prospective, open-label, randomised controlled trials assessing iron absorption using (54Fe)-labelled, (57Fe)-labelled, or (58Fe)-labelled ferrous sulfate in iron-depleted (serum ferritin ≤25 μg/L) women aged 18-40 years recruited from ETH Zurich and the University of Zurich, Switzerland. In study 1, women were randomly assigned (1:1) to two groups. One group was given 60 mg iron at 0800 h (±1 h) on consecutive days for 14 days, and the other group was given the same doses on alternate days for 28 days. In study 2, women were assigned to two groups, stratified by serum ferritin so that two groups with similar iron statuses could be formed. One group was given 120 mg iron at 0800 h (±1 h) and the other was given the dose split into two divided doses of 60 mg at 0800 h (±1 h) and 1700 h (±1 h) for three consecutive days. 14 days after the final dose, the groups were each crossed over to the other regimen. Within-individual comparisons were done. The co-primary outcomes in both studies were iron bioavailability (total and fractional iron absorption), assessed by measuring the isotopic label abundance in erythrocytes 14 days after administration, and serum hepcidin. Group allocations in both studies were not masked and primary and safety analyses were done on an intention-to-treat basis. The studies were registered at ClinicalTrials.gov, numbers NCT02175888 (study 1) and NCT02177851 (study 2) and are complete. FINDINGS For study 1, 40 women were enrolled on Oct 15-29, 2015. 21 women were assigned to the consecutive-day group and 19 to the alternate-day group. At the end of treatment (14 days for the consecutive-day group and 28 days for the alternate-day group), geometric mean (-SD, +SD) cumulative fractional iron absorptions were 16·3% (9·3, 28·8) in the consecutive-day group versus 21·8% (13·7, 34·6) in the alternate-day group (p=0·0013), and cumulative total iron absorption was 131·0 mg (71·4, 240·5) versus 175·3 mg (110·3, 278·5; p=0·0010). During the first 14 days of supplementation in both groups, serum hepcidin was higher in the consecutive-day group than the alternate-day group (p=0·0031). In study 2, 20 women were enrolled between Aug 13 and 18, 2015. Ten women were assigned to receive once-daily dosing and ten were assigned to receive twice-daily divided dosing. No significant differences were seen in fractional (day 1-3 geometric mean: 11·8% [7·1, 19·4] once daily vs 13·1% [8·2, 20·7] twice daily; p=0·33) or total iron absorption (day 1-3: 44·3 mg [29·4, 66·7] once daily vs 49·4 [35·2, 69·4] twice daily; p=0·33) between the two dosing regimens. Twice-daily divided doses resulted in a higher serum hepcidin concentration than once-daily dosing (p=0·013). No grade 3 or 4 adverse events were reported in either study. INTERPRETATION In iron-depleted women, providing iron supplements daily as divided doses increases serum hepcidin and reduces iron absorption. Providing iron supplements on alternate days and in single doses optimises iron absorption and might be a preferable dosing regimen. These findings should be confirmed in iron-deficient anaemic patients. FUNDING Swiss National Science Foundation, Bern, Switzerland.


British Journal of Nutrition | 2014

Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.

Colin I. Cercamondi; Ines Egli; Christophe Zeder; Richard F. Hurrell

In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.


Gut | 2017

Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants

Daniela Paganini; Mary A. Uyoga; Guus A. M. Kortman; Colin I. Cercamondi; Diego Moretti; Tanja Barth-Jaeggi; Clarissa Schwab; Jos Boekhorst; Harro M. Timmerman; Christophe Lacroix; Simon Karanja; Michael B. Zimmermann

Objective Iron-containing micronutrient powders (MNPs) reduce anaemia in African infants, but the current high iron dose (12.5 mg/day) may decrease gut Bifidobacteriaceae and Lactobacillaceae, and increase enteropathogens, diarrhoea and respiratory tract infections (RTIs). We evaluated the efficacy and safety of a new MNP formula with prebiotic galacto-oligosaccharides (GOS) combined with a low dose (5 mg/day) of highly bioavailable iron. Design In a 4-month, controlled, double-blind trial, we randomised Kenyan infants aged 6.5–9.5 months (n=155) to receive daily (1) a MNP without iron (control); (2) the identical MNP but with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) (Fe group); or (3) the identical MNP as the Fe group but with 7.5 g GOS (FeGOS group). Results Anaemia decreased by ≈50% in the Fe and FeGOS groups (p<0.001). Compared with the control or FeGOS group, in the Fe group there were (1) lower abundances of Bifidobacterium and Lactobacillus and higher abundances of Clostridiales (p<0.01); (2) higher abundances of virulence and toxin genes (VTGs) of pathogens (p<0.01); (3) higher plasma intestinal fatty acid-binding protein (a biomarker of enterocyte damage) (p<0.05); and (4) a higher incidence of treated RTIs (p<0.05). In contrast, there were no significant differences in these variables comparing the control and FeGOS groups, with the exception that the abundance of VTGs of all pathogens was significantly lower in the FeGOS group compared with the control and Fe groups (p<0.01). Conclusion A MNP containing a low dose of highly bioavailable iron reduces anaemia, and the addition of GOS mitigates most of the adverse effects of iron on the gut microbiome and morbidity in African infants. Trial registration number NCT02118402.


Journal of Nutrition | 2013

Iron Bioavailability from a Lipid-Based Complementary Food Fortificant Mixed with Millet Porridge Can Be Optimized by Adding Phytase and Ascorbic Acid but Not by Using a Mixture of Ferrous Sulfate and Sodium Iron EDTA

Colin I. Cercamondi; Ines Egli; Evariste Mitchikpe; Félicien Tossou; Joamel Hessou; Christophe Zeder; Joseph D. Hounhouigan; Richard F. Hurrell

Home fortification with lipid-based nutrient supplements (LNSs) is a promising approach to improve bioavailable iron and energy intake of young children in developing countries. To optimize iron bioavailability from an LNS named complementary food fortificant (CFF), 3 stable isotope studies were conducted in 52 young Beninese children. Test meals consisted of millet porridge mixed with CFF and ascorbic acid (AA). Study 1 compared iron absorption from FeSO4-fortifed meals with meals fortified with a mixture of FeSO4 and NaFeEDTA. Study 2 compared iron absorption from FeSO4-fortifed meals without or with extra AA. Study 3 compared iron absorption from FeSO4-fortified meals with meals containing phytase added prior to consumption, once without or once with extra AA. Iron absorption was measured as erythrocyte incorporation of stable isotopes. In study 1, iron absorption from FeSO4 (8.4%) was higher than that from the mixture of NaFeEDTA and FeSO4 (5.9%; P < 0.05). In study 2, the extra AA increased absorption (11.6%) compared with the standard AA concentration (7.3%; P < 0.001). In study 3, absorption from meals containing phytase without or with extra AA (15.8 and 19.9%, respectively) increased compared with meals without phytase (8.0%; P < 0.001). The addition of extra AA to meals containing phytase increased absorption compared with the test meals containing phytase without extra AA (P < 0.05). These findings suggest that phytase and AA, and especially a combination of the two, but not a mixture of FeSO4 and NaFeEDTA would be useful strategies to increase iron bioavailability from a CFF mixed with cereal porridge.


Journal of Nutrition | 2014

A Higher Proportion of Iron-Rich Leafy Vegetables in a Typical Burkinabe Maize Meal Does Not Increase the Amount of Iron Absorbed in Young Women

Colin I. Cercamondi; Christèle Icard-Vernière; Ines Egli; Marlène Vernay; Fatoumata Hama; Inge D. Brouwer; Christophe Zeder; Jacques Berger; Richard F. Hurrell; Claire Mouquet-Rivier

Food-to-food fortification can be a promising approach to improve the low dietary iron intake and bioavailability from monotonous diets based on a small number of staple plant foods. In Burkina Faso, the common diet consists of a thick, cereal-based paste consumed with sauces composed of mainly green leaves, such as amaranth and jute leaves. Increasing the quantity of leaves in the sauces substantially increases their iron concentration. To evaluate whether increasing the quantity of leaves in sauces would provide additional bioavailable iron, an iron absorption study in 18 young women was conducted in Zurich, Switzerland. Burkinabe composite test meals consisting of the maize paste tô accompanied by an iron-improved amaranth sauce, an iron-improved jute sauce, or a traditional amaranth sauce were provided as multiple meals twice a day for 2 consecutive days. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes. Mean fractional iron absorption from maize paste consumed with an iron-improved amaranth sauce (4.9%) did not differ from the same meal consumed with an iron-improved jute sauce (4.9%; P = 0.9), resulting in a similar quantity of total iron absorbed (679 vs. 578 μg; P = 0.3). Mean fractional iron absorption from maize paste accompanied by a traditional amaranth sauce (7.4%) was significantly higher than that from the other 2 meal types (P < 0.05), but the quantity of total iron absorbed was similar (591 μg; P = 0.4 and 0.7, respectively). A food-to-food fortification approach based on an increase in leafy vegetables does not provide additional bioavailable iron, presumably due to the high phenolic compound concentration of the leaves tested. Alternative measures, such as adding iron absorption enhancers to the sauces, need to be investigated to improve iron nutrition from Burkinabe maize meals.


The American Journal of Clinical Nutrition | 2016

Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes

Laura Hackl; Colin I. Cercamondi; Christophe Zeder; Daniela Wild; Horst Adelmann; Michael B. Zimmermann; Diego Moretti

BACKGROUND Iron fortification of rice is a promising strategy for improving iron nutrition. However, it is technically challenging because rice is consumed as intact grains, and ferric pyrophosphate (FePP), which is usually used for rice fortification, has low bioavailability. OBJECTIVE We investigated whether the addition of a citric acid/trisodium citrate (CA/TSC) mixture before extrusion increases iron absorption in humans from FePP-fortified extruded rice grains. DESIGN We conducted an iron absorption study in iron-sufficient young women (n = 20), in which each participant consumed 4 different meals (4 mg Fe/meal): 1) extruded FePP-fortified rice (No CA/TSC); 2) extruded FePP-fortified rice with CA/TSC added before extrusion (CA/TSC extruded); 3) extruded FePP-fortified rice with CA/TSC solution added after cooking and before consumption (CA/TSC solution); and 4) nonextruded rice fortified with a FeSO4 solution added after cooking and before consumption (reference). Iron absorption was calculated from erythrocyte incorporation of stable iron isotopes 14 d after administration. In in vitro experiments, we assessed the soluble and dialyzable iron from rice meals in which CA/TSC was added at different preparation stages and from meals with different iron:CA:TSC ratios. RESULTS Fractional iron absorption was significantly higher from CA/TSC-extruded meals (3.2%) than from No CA/TSC (1.7%) and CA/TSC solution (1.7%; all P < 0.05) and was not different from the FeSO4 reference meal (3.4%). In vitro solubility and dialyzability were higher in CA/TSC-extruded rice than in rice with No CA/TSC and CA/TSC solution, and solubility increased with higher amounts of added CA and TSC in extruded rice. CONCLUSIONS Iron bioavailability nearly doubled when CA/TSC was extruded with FePP into fortified rice, resulting in iron bioavailability comparable to that of FeSO4 We attribute this effect to an in situ generation of soluble FePP citrate moieties during extrusion and/or cooking because of the close physical proximity of FePP and CA/TSC in the extruded rice matrix. This trial was registered at clinicaltrials.gov as NCT02176759.


British Journal of Nutrition | 2016

Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate

Colin I. Cercamondi; Guus Smje Duchateau; Rajwinder K. Harika; Robin van den Berg; Peter Murray; Wieneke P. Koppenol; Christophe Zeder; Michael B. Zimmermann; Diego Moretti

Fe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (P<0·005) when comparing bouillons fortified with FePP only (4·4 %) and bouillons fortified with FePP+NaPP (6·4 %). Fe absorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well.


The American Journal of Clinical Nutrition | 2017

Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants

Daniela Paganini; Mary A. Uyoga; Colin I. Cercamondi; Diego Moretti; Edith Mwasi; Clarissa Schwab; Salome Bechtler; Francis M. Mutuku; Valeria Galetti; Christophe Lacroix; Simon Karanja; Michael B. Zimmermann

Background: Whether consumption of prebiotics increases iron absorption in infants is unclear.Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants.Design: Infants (n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57FeFum+Na58FeEDTA or ferrous sulfate (54FeSO4). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models.Results: There was a significant group-by-compound interaction on iron absorption (P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, (P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively (P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA (P = 0.047) in the Fe+GOS group but not from the FeSO4 (P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. (P = 0.008) and Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.018); Lactobacillus/Pediococcus/Leuconostoc spp. decreased in the Fe group (P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group (P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH (P < 0.001) and positively correlated with Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.001).Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417.

Collaboration


Dive into the Colin I. Cercamondi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary A. Uyoga

Jomo Kenyatta University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Simon Karanja

Jomo Kenyatta University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge