Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin McCoy is active.

Publication


Featured researches published by Colin McCoy.


Chemical Communications | 1996

Direct visual indication of pH windows: ‘off–on–off’ fluorescent PET (photoinduced electron transfer) sensors/switches

A. Prasanna de Silva; H. Q. Nimal Gunaratne; Colin McCoy

1–3, which contain a fluorophore and two proton receptors with opposite PET (photoinduced electron transfer) characteristics, only display strong fluorescence within a pH window whose position and width are tunable.


Journal of the American Chemical Society | 2009

Metal-Directed Synthesis of Enantiomerially Pure Dimetallic Lanthanide Luminescent Triple-Stranded Helicates

Floriana Stomeo; Christophe Lincheneau; Joseph P. Leonard; John O'Brien; Robert D. Peacock; Colin McCoy; Thorfinnur Gunnlaugsson

The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu(2):1(3) and Eu(2):2(3) that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu(2):1(3) and Eu(2):2(3).


Biomaterials | 2002

Poly(ε-caprolactone) and poly(ε-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro

David S. Jones; Jasmina Djokic; Colin McCoy; Sean Gorman

This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(e-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37°C in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Youngs modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials.


Journal of Controlled Release | 2003

An investigation into the structure and bioavailability of α-tocopherol dispersions in Gelucire 44/14

S.A. Barker; S.P. Yap; K.H. Yuen; Colin McCoy; J.R. Murphy; Duncan Q.M. Craig

In this investigation we describe the preparation, physical characterisation and in vivo behaviour of solid dispersions of a liquid nutraceutical, alpha-tocopherol, in Gelucire 44/14 with a view to establishing whether dispersion in this matrix may provide a means of formulating a liquid drug in a solid dosage form while also improving the oral bioavailability. Using Vitamin E Preparation USP as the source of alpha-tocopherol, dispersions were prepared using a melt-fusion method with active loadings up to 50% (w/w) and characterised using differential scanning calorimetry and optical microscopy. Capsules containing 300 IU alpha-tocopherol were manufactured and the absorption profiles compared to a commercial soft gelatin capsule preparation in healthy human volunteers. Confocal laser scanning microscopy (CLSM) studies were performed in order to elucidate the mechanism by which drug release may be occurring. Differential scanning calorimetry studies indicated that the presence of the active had a negligible effect on the melting profile of the carrier, indicating limited miscibility between the two components, a conclusion supported by the microscopy studies. Similarly, the dispersions were shown to exhibit a glass transition corresponding to the incorporated drug, indicating molecular cooperativity and hence phase separation from the lipid base. Despite the phase separation, it was noted that capsules stored for 18 months under ambient conditions showed no evidence of leakage. Bioavailability studies in six healthy male volunteers indicated that the Gelucire 44/14 formulation showed an approximately two-fold increase in total alpha-tocopherol absorption compared to the commercial preparation. Confocal laser scanning microscopy studies indicated that, on contact with water, the dispersions formed two interfacial layers, from which the Gelucire 44/14 disperses in the liquid medium as small particles. Furthermore, evidence was obtained for the dispersed material becoming incorporated into the hydrated lipid. In conclusion, the dispersion of the liquid drug in Gelucire 44/14 appears to allow the dual advantages of the preparation of a solid formulation and improved bioavailability of this material.


Journal of the American Chemical Society | 2009

Selective Imaging of Damaged Bone Structure (Microcracks) Using a Targeting Supramolecular Eu(III) Complex As a Lanthanide Luminescent Contrast Agent

Brian K. McMahon; Peter Mauer; Colin McCoy; T. Clive Lee; Thorfinnur Gunnlaugsson

The synthesis and photophysical evaluation of a new supramolecular lanthanide complex is described which was developed as a luminescent contrast agent for bone structure analysis. We show that the Eu(III) emission of this complex is not pH dependent within the physiological pH range and its steady state emission is not significantly modulated by a series of group I and II as well as D-metal ions and that this agent can be successfully employed to image mechanically formed cracks (scratches) in bone samples after 4 or 24 h, using confocal laser-scanning microscopy.


Expert Opinion on Drug Delivery | 2010

Triggered drug delivery from biomaterials.

Colin McCoy; Christopher Brady; John F. Cowley; Seana McGlinchey; Niamh McGoldrick; Deborah J Kinnear; Gavin Andrews; David S. Jones

Importance of the field: Conventional dosing methods are frequently unable to deliver the clinical requirement of the patient. The ability to control the delivery of drugs from implanted materials is difficult to achieve, but offers promise in diverse areas such as infection-resistant medical devices and responsive implants for diabetics. Areas covered in this review: This review gives a broad overview of recent progress in the use of triggers that can be used to achieve modulation of drug release rates from implantable biomaterials. In particular, these can be classified as being responsive to one or more of the following stimuli: a chemical species, light, heat, magnetism, ultrasound and mechanical force. What the reader will gain: An overview of the potential for triggered drug delivery to give methods for tailoring the dose, location and time of release of a wide range of drugs where traditional dosing methods are not suitable. Particular emphasis is given to recently reported systems, and important historical reports are included. Take home message: The use of externally or internally applied triggers of drug delivery to biomaterials has significant potential for improved delivery modalities and infection resistance.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

The manufacture and characterisation of hot-melt extruded enteric tablets

Gavin Andrews; David S. Jones; Osama Abu Diak; Colin McCoy; Alan B. Watts; James W. McGinity

The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP K30 or Carbopol 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (Tg) of Eudragit L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.


Biomaterials | 2009

Anti-infective photodynamic biomaterials for the prevention of intraocular lens-associated infectious endophthalmitis

Carole Parsons; Colin McCoy; Sean Gorman; David S. Jones; Steven E. J. Bell; Clare Brady; Seana McGlinchey

Bacterial attachment onto intraocular lenses (IOLs) during cataract extraction and IOL implantation is a prominent aetiological factor in the pathogenesis of infectious endophthalmitis. Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) have shown that photosensitizers are effective treatments for cancer, and in the photoinactivation of bacteria, viruses, fungi and parasites, in the presence of light. To date, no method of localizing the photocytotoxic effect of a photosensitizer at a biomaterial surface has been demonstrated. Here we show a method for concentrating this effect at a material surface to prevent bacterial colonization by attaching a porphyrin photosensitizer at, or near to, that surface, and demonstrate the principle using IOL biomaterials. Anionic hydrogel copolymers were shown to permanently bind a cationic porphyrin through electrostatic interactions as a thin surface layer. The mechanical and thermal properties of the materials showed that the porphyrin acts as a surface cross-linking agent, and renders surfaces more hydrophilic. Importantly, Staphylococcus epidermidis adherence was reduced by up to 99.02+/-0.42% relative to the control in intense light conditions and 91.76+/-5.99% in the dark. The ability to concentrate the photocytotoxic effect at a surface, together with a significant dark effect, provides a platform for a range of light-activated anti-infective biomaterial technologies.


Biomaterials | 2012

Surface localisation of photosensitisers on intraocular lens biomaterials for prevention of infectious endophthalmitis and retinal protection

Colin McCoy; Rebecca Craig; Seana McGlinchey; Louise Carson; David S. Jones; Sean Gorman

Cataract surgery is one of the most commonly-practiced surgical procedures in Western medicine, and, while complications are rare, the most serious is infectious postoperative endophthalmitis. Bacteria may adhere to the implanted intraocular lens (IOL) and subsequent biofilm formation can lead to a chronic, difficult to treat infection. To date, no method to reduce the incidence of infectious endophthalmitis through bacterial elimination, while retaining optical transparency, has been reported. In this study we report a method to optimise the localisation of a cationic porphyrin at the surface of suitable acrylate copolymers, which is the first point of contact with potential pathogens. The porphyrin catalytically generates short-lived singlet oxygen, in the presence of visible light, which kills adherent bacteria indiscriminately. By restricting the photosensitiser to the surface of the biomaterial, reduction in optical transparency is minimised without affecting efficacy of singlet oxygen production. Hydrogel IOL biomaterials incorporating either methacrylic acid (MAA) or methyl methacrylate (MMA) co-monomers allow tuning of the hydrophobic and anionic properties to optimise the localisation of porphyrin. Physiochemical and antimicrobial properties of the materials have been characterised, giving candidate materials with self-generating, persistent anti-infective character against Gram-positive and Gram-negative organisms. Importantly, incorporation of porphyrin can also serve to protect the retina by filtering damaging shortwave visible light, due to the Soret absorption (λmax 430 nm).


PLOS ONE | 2015

Hydrogel-Forming Microneedle Arrays Allow Detection of Drugs and Glucose In Vivo: Potential for Use in Diagnosis and Therapeutic Drug Monitoring.

Ester Caffarel-Salvador; Aaron Brady; Eyman Eltayib; Teng Meng; Ana Alonso-Vicente; Patricia González-Vázquez; Barbara M. Torrisi; Eva M. Vicente-Pérez; Karen Mooney; David S. Jones; Steven E. J. Bell; Colin McCoy; Helen O. McCarthy; James McElnay; Ryan F. Donnelly

We describe, for the first time the use of hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of drug substances and glucose from skin in vitro and in vivo. MN prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) (11.1% w/w) and poly(ethyleneglycol) 10,000 daltons (5.6% w/w) and crosslinked by esterification swelled upon skin insertion by uptake of fluid. Post-removal, theophylline and caffeine were extracted from MN and determined using HPLC, with glucose quantified using a proprietary kit. In vitro studies using excised neonatal porcine skin bathed on the underside by physiologically-relevant analyte concentrations showed rapid (5 min) analyte uptake. For example, mean concentrations of 0.16 μg/mL and 0.85 μg/mL, respectively, were detected for the lowest (5 μg/mL) and highest (35 μg/mL) Franz cell concentrations of theophylline after 5 min insertion. A mean concentration of 0.10 μg/mL was obtained by extraction of MN inserted for 5 min into skin bathed with 5 μg/mL caffeine, while the mean concentration obtained by extraction of MN inserted into skin bathed with 15 μg/mL caffeine was 0.33 μg/mL. The mean detected glucose concentration after 5 min insertion into skin bathed with 4 mmol/L was 19.46 nmol/L. The highest theophylline concentration detected following extraction from a hydrogel-forming MN inserted for 1 h into the skin of a rat dosed orally with 10 mg/kg was of 0.363 μg/mL, whilst a maximum concentration of 0.063 μg/mL was detected following extraction from a MN inserted for 1 h into the skin of a rat dosed with 5 mg/kg theophylline. In human volunteers, the highest mean concentration of caffeine detected using MN was 91.31 μg/mL over the period from 1 to 2 h post-consumption of 100 mg Proplus® tablets. The highest mean blood glucose level was 7.89 nmol/L detected 1 h following ingestion of 75 g of glucose, while the highest mean glucose concentration extracted from MN was 4.29 nmol/L, detected after 3 hours skin insertion in human volunteers. Whilst not directly correlated, concentrations extracted from MN were clearly indicative of trends in blood in both rats and human volunteers. This work strongly illustrates the potential of hydrogel-forming MN in minimally-invasive patient monitoring and diagnosis. Further studies are now ongoing to reduce clinical insertion times and develop mathematical algorithms enabling determination of blood levels directly from MN measurements.

Collaboration


Dive into the Colin McCoy's collaboration.

Top Co-Authors

Avatar

David S. Jones

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Sean Gorman

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Nicola Irwin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Gavin Andrews

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Louise Carson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Rebecca Craig

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Louise Donnelly

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Steven E. J. Bell

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Christopher Brady

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge