Colin P. Sharp
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Colin P. Sharp.
Journal of Experimental Medicine | 2005
Eileen T. Samy; Lucy A. Parker; Colin P. Sharp; Kenneth S. K. Tung
This study investigated the unresolved issue of antigen-dependency and antigen-specificity of autoimmune disease suppression by CD4+CD25+ T cells (T regs). Based on autoimmune ovarian disease (AOD) in day 3 thymectomized (d3tx) mice and polyclonal T regs expressing the Thy1.1 marker, we determined: (a) the location of recipient T cell suppression, (b) the distribution of AOD-suppressing T regs, and (c) the relative efficacy of male versus female T regs. Expansion of recipient CD4+ T cells, activation/memory marker expression, and IFN-γ production were inhibited persistently in the ovary-draining LNs but not elsewhere. The cellular changes were reversed upon Thy1.1+ T reg depletion, with emergence of potent pathogenic T cells and severe AOD. Similar changes were detected in the regional LNs during autoimmune dacryoadenitis and autoimmune prostatitis suppression. Although the infused Thy1.1+ T regs proliferated and were disseminated in peripheral lymphoid organs, only those retrieved from ovary-draining LNs adoptively suppressed AOD at a suboptimal cell dose. By depriving d3tx recipients of ovarian antigens, we unmasked the supremacy of ovarian antigen-exposed female over male T regs in AOD suppression. Thus, disease suppression by polyclonal T regs depends on endogenous antigen stimulation; this occurs in a location where potent antigen-specific T regs accumulate and continuously negate pathogenic T cell response.
The Journal of Infectious Diseases | 2009
Colin P. Sharp; Päivi Norja; Iain Anthony; Jeanne E. Bell; Peter Simmonds
BACKGROUND Infection with the human polyomaviruses BK (BKV) and JC (JCV) is almost ubiquitous, asymptomatic, and lifelong. However, reactivation during immunosuppression, associated with mutations in the transcriptional control region (TCR) that up-regulates viral replication, can cause life-threatening disease. In this study, we investigated whether the recently discovered WU and KI polyomaviruses (WUPyV and KIPyV) and Merkel cell polyomavirus (MCPyV) could, like BKV and JCV, persist, mutate, and reactivate in immunodeficient subjects. METHODS Autopsy samples of lymphoid tissue from 42 AIDS-immunosuppressed subjects and 55 control samples were screened by polymerase chain reaction for all 5 polyomaviruses. TCR sequences from KIPyV and WUPyV recovered from both immunosuppressed and nonimmunosuppressed subjects were compared. RESULTS Combined polyomavirus detection frequencies were much higher for the immunosuppressed group, compared with the nonimmunosuppressed group (35.7% vs. 3.6%), with viral loads in lymphoid tissues ranging from < or = 8.4 x 10(5) to > 1.5 x 10(5) viral genome copies per 10(6) cells. MCPyV was recovered from only 1 HIV-negative study subject. TCR sequences from reactivated WUPyV and KIPyV variants showed a number of point mutations and insertions that were absent in viruses recovered from respiratory tract specimens obtained from nonimmunosuppressed subjects. CONCLUSIONS KIPyV and WUPyV show reactivation frequencies comparable to those of BKV and JCV during immunosuppression. TCR changes that potentially lead to transcriptional dysregulation may have pathogenic consequences equivalent in severity to those observed for JCV and BKV.
Emerging Infectious Diseases | 2012
Sinéad Lyons; Amit Kapoor; Colin P. Sharp; Bradley S. Schneider; Nathan D. Wolfe; Geoff Culshaw; Brendan Corcoran; B.C. McGorum; Peter Simmonds
Viruses related to human hepatitis C virus infect horses in the United Kingdom without evidence of hepatic or other systemic disease.
Journal of Virology | 2010
Colin P. Sharp; Matthew LeBreton; Kalle Kantola; Ahmadou Nana; Joseph Le Doux Diffo; Cyrille F. Djoko; Ubald Tamoufe; John Kiyang; Tafon G. Babila; Eitel Mpoudi Ngole; Oliver G. Pybus; Eric Delwart; Eric Delaporte; Martine Peeters; Maria Söderlund-Venermo; Klaus Hedman; Nathan D. Wolfe; Peter Simmonds
ABSTRACT Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.
The Journal of Infectious Diseases | 2009
Colin P. Sharp; Alice Lail; Sharyne Donfield; Ruth Simmons; Clifford Leen; Paul Klenerman; Eric Delwart; Edward D. Gomperts; Peter Simmonds
BACKGROUND PARV4 is a human parvovirus that was first detected in and cloned from an individual with a human immunodeficiency virus (HIV) seroconversion-like illness and that subsequently persisted in the lymphoid tissue and bone marrow. In contrast to human parvovirus B19 infections, PARV4 infections are most frequently detected in injection drug users (IDUs), particularly those who are coinfected with HIV type 1 (HIV-1). To investigate the routes of transmission of PARV4 and to ascertain whether infections are acquired through plasma-derived blood products, we developed a novel anti-PARV4 enzyme-linked immunosorbent assay (ELISA) to determine its seroprevalence in subjects with parenteral exposure. METHODS PARV4 viral protein 2 (VP2) was expressed and used as antigen in an indirect ELISA, to detect anti-PARV4 immunoglobulin G. RESULTS All 50 adult control subjects who were nonparenterally exposed to PARV4 were anti-PARV4 negative, in contrast to HIV-infected and HIV-uninfected IDUs, who had antibody frequencies of 67% and 33%, respectively. Predominantly parenteral transmission was confirmed by the finding of similar frequencies of infection among HIV-coinfected and HIV-uninfected hemophiliacs (11 of 20 individuals and 4 of 15 individuals, respectively) who were treated with nonvirally inactivated factor VIII/factor IX, whereas all but 1 of the 35 nonhemophiliac siblings of these siblings were found to be seronegative (despite having close household contact). CONCLUSIONS The present study provides convincing evidence that PARV4 is primarily transmitted parenterally. Evidence for widespread infection of hemophiliacs treated with nonvirally inactivated clotting factor creates fresh safety concerns for plasma-derived blood products, particularly because parvoviruses are relatively resistant to virus inactivation.
Journal of Virology | 2011
Heli Harvala; Colin P. Sharp; Eitel Mpoudi Ngole; Eric Delaporte; Martine Peeters; Peter Simmonds
ABSTRACT Enteroviruses (EVs), members of the family Picornaviridae, are a genetically and antigenically diverse range of viruses causing acute infections in humans and several Old World monkey (OWM) species. Despite their known wide distribution in primates, nothing is currently known about the occurrence, frequency, and genetic diversity of enteroviruses infecting apes. To investigate this, 27 chimpanzee and 27 gorilla fecal samples collected from undisturbed jungle areas with minimal human contact in Cameroon were screened for EVs. Four chimpanzee samples were positive, but none of the gorilla samples were positive. Genetic characterization of the VP1, VP4, and partial VP2 genes, the 5′ untranslated region, and partial 3Dpol sequences enabled chimpanzee-derived EVs to be identified as (i) the species A type, EV76, (ii) a new species D type assigned as EV111, along with a human isolate from the Democratic Republic of Congo previously described by the International Committee on the Taxonomy of Viruses, and (iii) a new species B type (assigned as EV110) most closely related to, although a distinct type from, the SA5 isolate recovered from a vervet monkey. The identification of EVs infecting chimpanzees related to those circulating in human and OWM populations provides evidence for cross-species transmission of EVs between primates. However, the direction of transfer and the existence of primate sources of zoonotic enterovirus infections in humans require further investigation of population exposure and more extensive characterization of EVs circulating in wild ape populations.
Transfusion | 2012
Colin P. Sharp; Alice Lail; Sharyne Donfield; Edward D. Gomperts; Peter Simmonds
BACKGROUND: Human parvovirus 4 (PARV4) is a newly discovered parvovirus prevalent in injecting drug users and other groups with histories of parenteral exposure including persons with hemophilia exposed to non–virally inactivated clotting factor concentrates. To investigate its potential ongoing transmission to persons with hemophilia treated with plasma‐derived, virally inactivated clotting factors, we screened a large cohort of persons with hemophilia for antibody seroconversion to PARV4 over a 5‐year observation period.
Emerging Infectious Diseases | 2011
Laura A. Benjamin; Penny Lewthwaite; Ravi Vasanthapuram; Guoyan Zhao; Colin P. Sharp; Peter Simmonds; David Wang; Tom Solomon
To investigate whether uncharacterized infectious agents were associated with neurologic disease, we analyzed cerebrospinal fluid specimens from 12 children with acute central nervous system infection. A high-throughput pyrosequencing screen detected human parvovirus 4 DNA in cerebrospinal fluid of 2 children with encephalitis of unknown etiology.
Emerging Infectious Diseases | 2011
Anne Lahtinen; Pia Kivelä; Lea Hedman; Arun Kumar; Anu Kantele; Maija Lappalainen; Kirsi Liitsola; Matti Ristola; Eric Delwart; Colin P. Sharp; Peter Simmonds; Maria Söderlund-Venermo; Klaus Hedman
To determine the prevalence of parvovirus 4 infection and its clinical and sociodemographic correlations in Finland, we used virus-like particle–based serodiagnostic procedures (immunoglobulin [Ig] G, IgM, and IgG avidity) and PCR. We found 2 persons with parvovirus 4 primary infection who had mild or asymptomatic clinical features among hepatitis C virus–infected injection drug users.
Emerging Infectious Diseases | 2010
Colin P. Sharp; Marion Vermeulen; Yacouba Nébié; Cyrille F. Djoko; Matthew LeBreton; Ubald Tamoufe; Anne W. Rimoin; Patrick K. Kayembe; Jean K. Carr; Annabelle Servant-Delmas; Syria Laperche; G. L. Abby Harrison; Oliver G. Pybus; Eric Delwart; Nathan D. Wolfe; Andrew Saville; Jean Jacques Lefrère; Peter Simmonds
Human parvovirus 4 infections are primarily associated with parenteral exposure in western countries. By ELISA, we demonstrate frequent seropositivity for antibody to parvovirus 4 viral protein 2 among adult populations throughout sub-Saharan Africa (Burkina Faso, 37%; Cameroon, 25%; Democratic Republic of the Congo, 35%; South Africa, 20%), which implies existence of alternative transmission routes.